【題目】如圖,四邊形ABCD中,AB=AD,BC=DC,∠A=90°,∠ABC=105°.若AB=5 ,則△ABD外心與△BCD外心的距離為何?( )
A.5
B.5
C.
D.
【答案】A
【解析】解:如圖,連接AC,作DF⊥BC于F,AC與BD、DF交于點(diǎn)E、G.
∵AB=AD,CB=CD,
∴AC垂直平分BD,
∵∠BAD=90°,
∴∠ABD=∠ADB=45°,
∵∠ABC=105°,
∴∠CBD=60°,∵CB=CD,
∴△BCD是等邊三角形,△ABD是等腰直角三角形,
∴點(diǎn)E是△BAD的外心,點(diǎn)G是△BCD的外心,
在RT△ABD中,∵AB=AD=5 ,∴BD=10 ,∴BE=DE=5 ,在RT△EDG中,∵∠DEG=90°,∠EDG=30°,ED=5 ,∴tan30°= ,
∴EG=5.
∴△ABD外心與△BCD外心的距離為5.
故選A.
【考點(diǎn)精析】本題主要考查了三角形的外接圓與外心的相關(guān)知識點(diǎn),需要掌握過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為:A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)將△ABC沿y軸翻折,畫出翻折后的△A1B1C1 , 點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo)是
(2)△ABC關(guān)于x軸對稱的圖形△A2B2C2 , 直接寫出點(diǎn)A2的坐標(biāo)
(3)若△DBC與△ABC全等(點(diǎn)D與點(diǎn)A重合除外),請直接寫出滿足條件點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第1個(gè)△A1BC中,∠B=30°,A1B=CB;在邊A1B上任取一點(diǎn)D,延長CA1到A2,使A1A2=A1D,得到第2個(gè)△A1A2D;在邊A2D上任取一點(diǎn)E,延長A1A2到A3,使A2A3=A2E,得到第3個(gè)△A2A3E,…按此做法繼續(xù)下去,第2017個(gè)三角形的底角度數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設(shè)甲與A地相距y甲(km),乙與A地相距y乙(km),甲離開A地時(shí)間為x(h),y甲、y乙與x之間的函數(shù)圖象如圖所示.
(1)甲的速度是 km/h.
(2)請分別求出y甲、y乙與x之間的函數(shù)關(guān)系式.
(3)當(dāng)乙與A地相距240km時(shí),甲與B地相距多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點(diǎn).若∠B=90°,AB=4,BC=3,EF=1,則BN的長度為何?( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩村在一條小河的同一側(cè),要在河邊建一水廠向兩村供水.
⑴.若要使自來水廠到兩村的距離相等,廠址P應(yīng)選在哪個(gè)位置?
⑵.若要使自來水廠到兩村的輸水管用料最省,廠址Q應(yīng)選在哪個(gè)位置?請將上述兩種情況下的自來水廠廠址標(biāo)出,并保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動,同時(shí)動點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動都停止. 設(shè)點(diǎn)M運(yùn)動的時(shí)間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點(diǎn)E是邊AC的中點(diǎn),問在點(diǎn)M運(yùn)動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com