【題目】已知:如圖,ABCD中,AD=3cm,CD=1cm,∠B=45°,點P從點A出發(fā),沿AD方向勻速運動,速度為3cm/s;點Q從點C出發(fā),沿CD方向勻速運動,速度為1cm/s,連接并延長QP交BA的延長線于點M,過M作MN⊥BC,垂足是N,設(shè)運動時間為t(s)(0<t<1).
(1)當t為何值時,四邊形AQDM是平行四邊形?
(2)證明:在P、Q運動的過程中,總有CQ=AM;
(3)是否存在某一時刻t,使四邊形ANPM的面積是平行四邊形ABCD的面積的一半?若存在,求出相應的t值;若不存在,說明理由.
【答案】(1) 是 (2)見解析 (3) 當t= s時,四邊形ANPM的面積是平行四邊形ABCD的面積的一半
【解析】試題分析: (1)連結(jié)AQ、MD,根據(jù)平行四邊形的對角線互相平分得出AP=DP,代入求出即可;
(2)根據(jù)已知得出△AMP∽△DQP,再根據(jù)相似三角形的性質(zhì)得出=,求出AM的值,從而得出在P、Q運動的過程中,總有CQ=AM;
(3)根據(jù)已知條件得出BN=MN,再根據(jù)BM=AB+AM,由勾股定理得出BN=MN=(1+t),根據(jù)四邊形ABCD是平行四邊形,得出MN⊥AD,設(shè)四邊形ANPM的面積為y,得出y=×AP×MN,假設(shè)存在某一時刻t,四邊形ANPM的面積是平行四邊形ABCD的面積的一半,得出t2+t=×3×,最后進行整理,即可求出t的值.
試題解析:
(1)連結(jié)AQ、MD,
∵當AP=PD時,四邊形AQDM是平行四邊形,
∴3t=3﹣3t,
解得:t=,
∴t=s時,四邊形AQDM是平行四邊形.
(2)∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴△AMP∽△DQP,
∴=,
∴=,
∴AM=t,
即在P、Q運動的過程中,總有CQ=AM;
(3)∵MN⊥BC,
∴∠MNB=90°,
∵∠B=45°,
∴∠BMN=45°=∠B,
∴BN=MN,
∵BM=AB+AM=1+t,
在Rt△BMN中,由勾股定理得:BN=MN=(1+t),
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∵MN⊥BC,
∴MN⊥AD,
設(shè)四邊形ANPM的面積為y,
∴y=×AP×MN=×3t×(1+t)=t2+t(0<t<1).
假設(shè)存在某一時刻t,四邊形ANPM的面積是平行四邊形ABCD的面積的一半,
∴t2+t=×3×,
整理得:t2+t﹣1=0,
解得:t1=,t2=(舍去),
∴當t=s時,四邊形ANPM的面積是平行四邊形ABCD的面積的一半.
科目:初中數(shù)學 來源: 題型:
【題目】若順次連接四邊形ABCD各邊中點所得四邊形是矩形,則四邊形ABCD必然是( )
A.菱形
B.對角線相互垂直的四邊形
C.正方形
D.對角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+4的圖象經(jīng)過點(﹣3,﹣2).
(1)求這個函數(shù)表達式;
(2)畫出該函數(shù)的圖象.
(3)判斷點(3,5)是否在此函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,并解答問題.
材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵對應任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.
解答:
(1)將分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
(2)試說明的最小值為8.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別與AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結(jié)論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com