在△ABC中,∠ABC=45°,AD⊥BC,垂足為D;BE⊥AC,垂足為E,AD交BE于F,連接CF.

(1)若∠BAC是銳角,如圖1,求證:△CDF是等腰直角三角形;
(2)若∠BAC是鈍角,如圖2,求證:△CDF是等腰直角三角形.
【答案】分析:(1)先證明BD=AD,可證明△BFD≌△ACD,則FD=CD,從而得出△CDF是等腰直角三角形;
(2)可證△BFD≌△ACD,則FD=CD,△CDF是等腰直角三角形.
解答:證明:(1)∵∠ABC=45°,AD⊥BC,
∴∠ABC=∠BAD,
∴BD=AD,
∵BE⊥AC,垂足為E,
∴∠FBD+∠ACB=90°,
∵∠CAD+∠ACB=90°,
∴∠FBD=∠CAD,
∵∠BDF=∠ADC=90°,
∴△BFD≌△ACD,
∴FD=CD,
∴△CDF是等腰直角三角形.

(2)同(1)可證△BFD≌△ACD,
∴FD=CD,
∴△CDF是等腰直角三角形.
點(diǎn)評(píng):本題考查了全等三角形的判定和性質(zhì)以及等腰直角三角形的判定,注意全等的四種判定方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長(zhǎng);
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•襄陽(yáng))如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長(zhǎng)線交CB的延長(zhǎng)線于點(diǎn)M,EB的延長(zhǎng)線交AD的延長(zhǎng)線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案