如圖,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三邊為直徑向三角形外作三個半圓,矩形EFGH的各邊分別與半圓相切且平行于AB或BC,則矩形EFGH的周長是        
48。
取AC的中點O,過點O作MN∥EF,PQ∥EH,

∵四邊形EFGH是矩形,∴EH∥PQ∥FG,EF∥MN∥GH,∠E=∠H=90°。
∴PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG。
∵AB∥EF,BC∥FG,∴AB∥MN∥GH,BC∥PQ∥FG。
∴AL=BL,BK=CK!郞L=BC=×8=4,OK=AB=×6=3,
∵矩形EFGH的各邊分別與半圓相切,∴PL=AB=×6=3,KN=BC=×8=4。
在Rt△ABC中,,∴OM=OQ=AC=5。
∴EH=FG=PQ=PL+OL+OQ=3+4+5=12,EF=GH=MN=OM+OK+NK=5+3+4=12,
∴矩形EFGH的周長是:EF+FG+GH+EH=12+12+12+12=48。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB=8,AC=4,D是AB邊上一點,P是優(yōu)弧的中點,連接PA、PB、PC、PD,當BD的長度為多少時,△PAD是以AD為底邊的等腰三角形?并加以證明。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線與x軸、y軸分別相交于點A、B,與正比例函數(shù)的圖象相交于點C、D(點C在點D的左側(cè)),⊙O是以CD長為半徑的圓。CE∥x軸,DE∥y軸,CE、DE相交于點E。
(1)△CDE是    ▲   三角形;點C的坐標為    ▲   ,點D的坐標為    ▲   (用含有b的代數(shù)式表示);
(2)b為何值時,點E在⊙O上?
(3)隨著b取值逐漸增大,直線與⊙O有哪些位置關系?求出相應b的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知梯形ABCD內(nèi)接于⊙O,AB//CD,AB="8" cm,CD ="6" cm,⊙O的半徑為5cm,則S梯形ABCD=           

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法不正確的是(     )
A.圓是軸對稱圖形,它有無數(shù)條對稱軸;
B.圓的半徑、弦長的一半、弦上的弦心距能組成一直角三角形,且圓的半徑是此直角三角形的斜邊;
C.弦長相等,則弦所對的弦心距也相等;
D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某施工工地安放了一個圓柱形飲水桶的木制支架(如圖1),若不計木條的厚
度,其俯視圖如圖2所示,已知AD垂直平分BC,AD=BC=48cm,則圓柱形飲水桶的底面半徑的最大值
   ▲    cm.  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有一個底面半徑為3cm,母線長10cm的圓錐,則其側(cè)面積是    ▲   cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的直徑CD垂直于AB,∠AOC=48°,則∠BDC=  度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知兩圓的半徑、分別為方程的兩根,兩圓的圓心距為1,兩圓的位置關系是  

查看答案和解析>>

同步練習冊答案