【題目】如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD的內(nèi)部,將AF延長后交邊BC于點G,且,則的值為__.
【答案】
【解析】
根據(jù)中點定義可得DE=CE,再根據(jù)翻折的性質(zhì)可得DE=EF,AF=AD,∠AFE=∠D=90°,從而得到CE=EF,連接EG,利用“HL”證明Rt△ECG和Rt△EFG全等,根據(jù)全等三角形對應(yīng)邊相等可得CG=FG,設(shè)CG=a,表示出GB,然后求出BC,再根據(jù)矩形的對邊相等可得AD=BC,從而求出AF,再求出AG,然后利用勾股定理求出AB,再求比值即可.
解:如圖,連接GE.
∵四邊形ABCD是矩形,∴AD=BC.
∵點E是邊CD的中點,∴DE=CE.
∵將△ADE沿AE折疊后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF.在Rt△ECG和Rt△EFG中,,
∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG.
∵=,
∴設(shè)CG=2a=FG,BC=7a,
∴BG=5a,AD=AF=7a,
∴AG=9a.
在Rt△ABG中,AB==a,
∴=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】周末,小凱和同學帶著皮尺,去測量楊大爺家露臺遮陽蓬的寬度,如圖,由于無法直接測量,小凱便在樓前面的地面上選擇了一條直線EF,通過在直線EF上選點觀測,發(fā)現(xiàn)當他位于N點時,他的視線從M點通過露臺D點正好落在遮陽蓬A點處:當他位于Q點時,視線從P點通過露臺D點正好落在遮陽蓬B點處,這樣觀測到兩個點A,B間的距離即為遮陽蓬的寬.已知AB∥CD∥EF,點C在AG上,AG、DE、PQ、MN均為垂直于EF,MN=PQ,露臺的寬CD=GE,測得GE=5米,EN=13.2米,QN=6.2,請你根據(jù)以上信息,求出遮陽蓬的寬AB是多少米?(結(jié)果精確到0.01米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2﹣3(a+1)x+2a+3(a≠0)與直線y=x﹣1交于點A和點B(點A在點B的左側(cè)),AB=5.
(1)求證:該拋物線必過一個定點;
(2)求該拋物線的解析式;
(3)設(shè)直線x=m與該拋物線交于點E(x1,y1),與直線AB交于點F(x2,y2),當滿足y1+y2>0且y1y2<0時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為8,以AB為直徑的圓交BC于點F.以C為圓心,CF長為半徑作圖,D是⊙C上一動點,E為BD的中點,當AE最大時,BD的長為( 。
A. B. C. D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題發(fā)現(xiàn):
()如圖①,中,,,,點是邊上任意一點,則的最小值為__________.
()如圖②,矩形中,,,點、點分別在、上,求的最小值.
()如圖③,矩形中,,,點是邊上一點,且,點是邊上的任意一點,把沿翻折,點的對應(yīng)點為點,連接、,四邊形的面積是否存在最小值,若存在,求這個最小值及此時的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關(guān)系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當 AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點測得池中噴泉處E點的俯角為42°,在C點測得E點的俯角為45°,點B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,再過點A作半圓的切線,與半圓切于點F,與CD交于點E,則S梯形ABCE=_____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com