如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為()的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)), 已知點(diǎn)坐標(biāo)為(,)。

(1)求此拋物線的解析式;
(2)過(guò)點(diǎn)作線段的垂線交拋物線于點(diǎn), 如果以點(diǎn)為圓心的圓與直線 相切,請(qǐng)判斷拋物線的對(duì)稱軸與⊙有怎樣的位置關(guān)系,并給出證明;
(3)已知點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于兩點(diǎn)之間,過(guò)點(diǎn)軸的平行線與交于點(diǎn)問(wèn):當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段的長(zhǎng)度最大?并求出此時(shí)△的面積。
(1)……2分
(2)拋物線的對(duì)稱軸與⊙相交. ……3分
算出⊙半徑為 ……5分
點(diǎn)C到對(duì)稱軸的距離為
∴拋物線的對(duì)稱軸與⊙相交……6分
(3)……7分
設(shè),……8分
當(dāng)m=3時(shí)PQ的最大值為,此時(shí),……9分  ……10分解析:
利用頂點(diǎn)為(,),點(diǎn)坐標(biāo)為()求出拋物線的解析式
(2)算出⊙半徑,點(diǎn)C到對(duì)稱軸的距離,即可知道位置關(guān)系
(3)求出直線AC的解析式,設(shè),知道,可求出PQ 的長(zhǎng)度,從而求出最大值和P點(diǎn)坐標(biāo),再根據(jù)三角形的面積公式求出面積
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案