【題目】某藥廠銷售部門根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型原料藥未來(lái)兩年的銷售進(jìn)行預(yù)測(cè),并建立如下模型:設(shè)第t個(gè)月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個(gè)月銷售該原料藥每噸的毛利潤(rùn)為Q(單位:萬(wàn)元),Q與t之間滿足如下關(guān)系:當(dāng)0<t≤12時(shí),Q=2t+8;當(dāng)12<t≤24時(shí),Q=﹣t+44.
(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t(0<t≤24)個(gè)月銷售該原料藥的月毛利潤(rùn)為W(單位:萬(wàn)元)
①求W關(guān)于t的函數(shù)解析式;
②該藥廠銷售部門分析認(rèn)為,336≤W≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤(rùn)范圍,求此范圍所對(duì)應(yīng)的月銷售量P的最小值和最大值.
【答案】(1)P=t+2;(2)①當(dāng)0<t≤8時(shí),W=240;當(dāng)8<t≤12時(shí),W=2t2+12t+16;當(dāng)12<t≤24時(shí),W=﹣t2+42t+88;②P的最小值為12噸,最大值為19噸
【解析】
(1)利用待定系數(shù)法求解即可;
(2)根據(jù)銷售利潤(rùn)=銷售量×每噸利潤(rùn),分段列出月毛利潤(rùn)W(元)與月份t之間的函數(shù)關(guān)系式即可;
(3)根據(jù)函數(shù)的增減性求得336≤W≤513時(shí)t的取值范圍,即可求得對(duì)應(yīng)的月銷售量P的最小值和最大值.
解:(1)當(dāng)8<t≤24時(shí),設(shè) P=kx+b,
將(8,10),(24,26)代入得:,
解得,
故當(dāng)8<t≤24時(shí),P關(guān)于t的函數(shù)解析式為:P=t+2;
(2)①當(dāng)0<t≤8時(shí),W=(2t+8)×=240;
當(dāng)8<t≤12時(shí),W=(2t+8)(t+2)=2t2+12t+16;
當(dāng)12<t≤24時(shí),W=(﹣t+44)(t+2)=﹣t2+42t+88;
②當(dāng)8<t≤12時(shí),W=2t2+12t+16=2(t+3)2﹣2,
∴8<t≤12時(shí),W隨t的增大而增大,
當(dāng)2(t+3)2﹣2=336時(shí),
解得t=10或t=﹣16(舍去),
當(dāng)t=12時(shí),W取得最大值,最大值為448,
故當(dāng)10≤t≤12時(shí),336≤W≤448;
當(dāng)12<t≤24時(shí),W=﹣t2+42t+88=﹣(t﹣21)2+529,
∴當(dāng)t=12時(shí),W取得最小值448,
由﹣(t﹣21)2+529=513,得t=17或t=25(舍去),
∴當(dāng)12<t≤17時(shí),448<W≤513;
∴當(dāng)10≤t≤17時(shí),336≤W≤513,
當(dāng)t=10時(shí),P=t+2=12,當(dāng)t=17時(shí),P=t+2=19,
∴此范圍所對(duì)應(yīng)的月銷售量P的最小值為12噸,最大值為19噸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,BC=,點(diǎn)D是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合), 過(guò)點(diǎn)D作DE⊥BC交AB邊于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處,當(dāng)△AEF為直角三角形時(shí),BD的長(zhǎng)為________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以正方形的頂點(diǎn)為坐標(biāo)原點(diǎn),直線為軸建立直角坐標(biāo)系,對(duì)角線與相交于點(diǎn),為上一點(diǎn),點(diǎn)坐標(biāo)為,則點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到的對(duì)應(yīng)點(diǎn)的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第二屆“一帶一路”國(guó)際合作高峰論壇將于2019年4月在北京舉行.為了讓恩施特產(chǎn)走出大山,走向世界,恩施一民營(yíng)企業(yè)計(jì)劃生產(chǎn)甲、乙兩種商品共10萬(wàn)件,銷住“一帶一路”沿線國(guó)家和地區(qū).已知3件甲種商品與2件乙種商品的銷售收入相同,1件甲種商品比2件乙種商品的銷售收入少600元.甲、乙兩種商品的銷售利潤(rùn)分別為120元和200元
(1)甲、乙兩種商品的銷售單價(jià)各多少元?
(2)市場(chǎng)調(diào)研表明:所有商品能全部售出,企業(yè)要求生產(chǎn)乙種商品的數(shù)量不超過(guò)甲種商品數(shù)量的,且甲、乙兩種商品的銷售總收入不低于3300萬(wàn)元,請(qǐng)你為該企業(yè)設(shè)計(jì)一種生產(chǎn)方案,使銷售總利潤(rùn)最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某校學(xué)生對(duì)以下四個(gè)電視節(jié)目:最強(qiáng)大腦、中國(guó)詩(shī)詞大會(huì)、朗讀者、出彩中國(guó)人的喜愛(ài)情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛(ài)的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中所提供的信息,完成下列問(wèn)題:
本次調(diào)查的學(xué)生人數(shù)為______;
在扇形統(tǒng)計(jì)圖中,A部分所占圓心角的度數(shù)為______;
請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
若該校共有3000名學(xué)生,估計(jì)該校最喜愛(ài)中國(guó)詩(shī)詞大會(huì)的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識(shí)競(jìng)賽,某班進(jìn)行四次模擬訓(xùn)練,將成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩幅不完整的統(tǒng)計(jì)圖.優(yōu)秀人數(shù)條形統(tǒng)計(jì)圖
優(yōu)秀率折線統(tǒng)計(jì)圖
請(qǐng)根據(jù)以上兩幅圖,解答下列問(wèn)題:
(1)該班總?cè)藬?shù)是________;
(2)根據(jù)計(jì)算,請(qǐng)你補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)觀察補(bǔ)全后的統(tǒng)計(jì)圖,寫出一條你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(7分)某市“藝術(shù)節(jié)”期間,小明、小亮都想去觀看茶藝表演,但是只有一張茶藝表演門票,他們決定采用抽卡片的辦法確定誰(shuí)去.規(guī)則如下:
將正面分別標(biāo)有數(shù)字1、2、3、4的四張卡片(除數(shù)字外其余都相同)洗勻后,背面朝上放置在桌面上,隨機(jī)抽出一張記下數(shù)字后放回;重新洗勻后背面朝上放置在桌面上,再隨機(jī)抽出一張記下數(shù)字.如果兩個(gè)數(shù)字之和為奇數(shù),則小明去;如果兩個(gè)數(shù)字之和為偶數(shù),則小亮去.
(1)請(qǐng)用列表或畫樹(shù)狀圖的方法表示抽出的兩張卡片上的數(shù)字之和的所有可能出現(xiàn)的結(jié)果;
(2)你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)質(zhì)地均勻的正方體骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù).將骰子拋擲兩次,擲第一次,將朝上一面的點(diǎn)數(shù)記為,擲第二次,將朝上一面的點(diǎn)數(shù)記為,則點(diǎn)()落在直線上的概率為:
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,OB=OC=3.
(1)求該拋物線的函數(shù)解析式;
(2)如圖1,連接BC,點(diǎn)D是直線BC上方拋物線上的點(diǎn),連接OD,CD,OD交BC于點(diǎn)F,當(dāng)S△COF:S△CDF=3:2時(shí),求點(diǎn)D的坐標(biāo).
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,),在拋物線上是否存在點(diǎn)P,使∠OBP=2∠OBE?若存在,請(qǐng)直接寫出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com