【題目】為紀念“五四運動”100周年,某校舉行了征文比賽,該校學生全部參加了比賽.比賽設(shè)置一等、二等、三等三個獎項,賽后該校對學生獲獎情況做了抽樣調(diào)查,并將所得數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

1)本次抽樣調(diào)查學生的人數(shù)為   

2)補全兩個統(tǒng)計圖,并求出扇形統(tǒng)計圖中A所對應(yīng)扇形圓心角的度數(shù).

3)若該校共有840名學生,請根據(jù)抽樣調(diào)查結(jié)果估計獲得三等獎的人數(shù).

【答案】140;(2)見解析,18°;(3)獲得三等獎的有210人.

【解析】

1)根據(jù)B的人數(shù)和所占的百分比可以求得本次抽樣調(diào)查學生人數(shù);

2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)和(1)中的結(jié)果可以將統(tǒng)計圖中所缺的數(shù)據(jù)補充完整并計算出扇形統(tǒng)計圖中A所對應(yīng)扇形圓心角的度數(shù);

3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出獲得三等獎的人數(shù).

解:(1)本次抽樣調(diào)查學生的人數(shù)為:8÷20%=40

故答案為:40;

2A所占的百分比為:×100%=5%,

D所占的百分比為:×100%=50%,

C所占的百分比為:15%﹣20%﹣50%=25%,

獲得三等獎的人數(shù)為:40×25%=10,

補全的統(tǒng)計圖如圖所示,

扇形統(tǒng)計圖中A所對應(yīng)扇形圓心角的度數(shù)是360°×5%=18°;

3840×25%=210(人),

答:獲得三等獎的有210人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)之間成如圖所示的反比例函數(shù)關(guān)系,則眼鏡度數(shù)y與鏡片焦距x之間的函數(shù)解析式為( 。

A. y200x B. y C. y100x D. y

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動當滾動一周回到原位置時,點C運動的路徑長為__ _

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點在BC上,且四邊形AEFD是平行四邊形.

(1)ADBC有何等量關(guān)系?請說明理由;

(2)當AB=DC時,求證:四邊形AEFD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C

1)求拋物線的解析式;

2)若點D在拋物線上,點E在拋物線的對稱軸上,且A、O、D、E為頂點的四邊形是平行四邊形,求點D的坐標;

3P是拋物線上的第一象限內(nèi)的動點,過點PPMx軸,垂足為M,是否存在點P,使得以PM、A為頂點的三角形BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)的對稱軸為直線x1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

4acb2;

3a+c0;

③方程ax2+bx+c0的兩個根是x1=﹣1,x23

④當y3時,x的取值范圍是0≤x2

⑤當x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O中,弦ABAC,∠BAC120°

1)如圖①,若AB3,求⊙O的半徑.

2)如圖②,點P是∠BAC所對弧上一動點,連接PB、PAPC,試請判斷PA、PBPC之間的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形中,,過點于點,現(xiàn)將沿直線翻折至的位置,交于點.

1)求證:

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[問題發(fā)現(xiàn)]

如圖①,在中,點的中點,點在邊上,相交于點,若,則_____ ;

[拓展提高]

如圖②,在等邊三角形中,點的中點,點在邊上,直線相交于點,若,求的值.

[解決問題]

如圖③,在中,,點的中點,點在直線上,直線與直線相交于點.請直接寫出的長.

查看答案和解析>>

同步練習冊答案