【題目】如圖,正方形ABCD的面積為3cm2,E為BC邊上一點(diǎn),∠BAE=30°,F(xiàn)為AE的中點(diǎn),過(guò)點(diǎn)F作直線分別與AB,DC相交于點(diǎn)M,N.若MN=AE,則AM的長(zhǎng)等于 cm.
【答案】或.
【解析】
試題分析:如圖,作DH∥MN,∵四邊形ABCD是正方形,∴AD=AB,∠DAB=∠B=90°,AB∥CD,∴四邊形DHMN是平行四邊形,∴DH=MN=AE,在RT△ADH和RT△BAE中,∵AD=AB,DH=AE,∴△ADH≌△BAE,∴∠ADH=∠BAE,∴∠ADH+∠AHD=∠ADH+∠AMN=90°,∴∠BAE+∠AMN=90°,∴∠AFM=90°,在RT△ABE中,∵∠B=90°,AB=,∠BAE=30°,∴AEcos30°=AB,∴AE=2,在RT△AFM中,∵∠AFM=90°,AF=1,∠FAM=30°,∴AMcos30°=AF,∴AM=,根據(jù)對(duì)稱性當(dāng)M′N′=AE時(shí),BM′=,AM′=.故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=2(x-1)2+3上的三個(gè)點(diǎn),則y1,y2,y3的大小關(guān)系是( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y2>y1 D. y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)參與某小區(qū)7200平方米(外墻保溫)工程招標(biāo),比較這兩個(gè)工程隊(duì)的標(biāo)書發(fā)現(xiàn):乙隊(duì)每天完成的工程量是甲隊(duì)的1.5倍,這樣乙隊(duì)單獨(dú)干比甲隊(duì)單獨(dú)干能提前15天完成任務(wù),求甲隊(duì)在投標(biāo)書上注明的每天完成的工程量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD與菱形EFGH的對(duì)角線均交于點(diǎn)O,且EG∥BC,將矩形折疊,使點(diǎn)C與點(diǎn)O重合,折痕MN恰好過(guò)點(diǎn)G若AB=,EF=2,∠H=120°,則DN的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC經(jīng)過(guò)平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1 , y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+6,y1+4).
(1)請(qǐng)?jiān)趫D中作出△A′B′C′;
(2)寫出點(diǎn)A′、B′、C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E、F、G、H分別為菱形ABCD四邊的中點(diǎn),AB=6cm,∠ABC=60°,則四邊形EFGH的面積為 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程組 的解中,x為非正數(shù),y為負(fù)數(shù).
(1)求a的取值范圍;
(2)化簡(jiǎn)|a﹣3|+|a+2|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD中,BC=3,點(diǎn)E、F分別是CB、CD延長(zhǎng)線上的點(diǎn),DF=BE,連接AE、AF,過(guò)點(diǎn)A作AH⊥ED于H點(diǎn).
(1)求證:△ADF≌△ABE;
(2)若BE=1,求tan∠AED的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com