【題目】如圖,在平面直角坐標系中,過點A0,6)的直線AB與直線OC相交于點C2,4)動點P沿路線OCB運動.(1)求直線AB的解析式;(2)當(dāng)△OPB的面積是△OBC的面積的時,求出這時點P的坐標;(3)是否存在點P,使△OBP是直角三角形?若存在,直接寫出點P的坐標,若不存在,請說明理由.

【答案】;P的坐標為

【解析】

(1)由B、C坐標,根據(jù)待定系數(shù)法可求得直線AB的解析式;(2)由(1)列出AB的方程,求出B的坐標,求出的面積和的面積,設(shè)P的縱坐標為m,代值求出m,再列出直線OC的解析式為,當(dāng)點POC上時,求出P點坐標,當(dāng)點PBC上時, 求出P點坐標即可;(3)根據(jù)直角三角形的性質(zhì)和點坐標列出解析式解出即可.

A的坐標為,

設(shè)直線AB的解析式為

在直線AB上,

,

,

直線AB的解析式為;

知,直線AB的解析式為,

,

,

,

的面積是的面積的,

,

設(shè)P的縱坐標為m

,

,

直線OC的解析式為,

當(dāng)點POC上時,

,

當(dāng)點PBC上時,,

,

即:點;

是直角三角形,

,

當(dāng)點POC上時,由知,直線OC的解析式為,

直線BP的解析式的比例系數(shù)為,

,

直線BP的解析式為,

聯(lián)立,解得,

,

當(dāng)點PBC上時,由知,直線AB的解析式為,

直線OP的解析式為,聯(lián)立解得,,

,

即:點P的坐標為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.

(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得   ,   ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC,AB=AC,DBC的中點AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,AD于點F,AC于點G.

(1)∠BAC=40°,求∠AEB的度數(shù);

(2)求證:∠AEB=∠ACF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD,DEAB,BFCD,垂足分別為E,F.

(1)求證:AE=CF.

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( 。

A. 3km/h4km/h B. 3km/h3km/h

C. 4km/h4km/h D. 4km/h3km/h

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,在直角坐標系xOy中,A(﹣1,0),B(3,0),將A,B同時分別向上平移2個單位,再向右平移1個單位,得到的對應(yīng)點分別為D,C,連接AD,BC.

(1)直接寫出點C,D的坐標:C ,D

(2)四邊形ABCD的面積為 ;

(3)點P為線段BC上一動點(不含端點),連接PDPO.求證:∠CDP+BOP=OPD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把 個邊長為1的正方形拼接成一排,求得 , , ,計算 , ……按此規(guī)律,寫出 (用含 的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

17﹣(﹣3+(﹣5

2)﹣2.5÷

3)﹣(﹣22[(﹣624]

4

53ab4ab﹣(﹣2ab

查看答案和解析>>

同步練習(xí)冊答案