【題目】如圖,點(diǎn)E、F、C、B在同一直線上,AB=DE,∠B=∠E,要判定△ABC≌△DEF,還需要添加一個(gè)條件,你添加的條件是(寫出一個(gè)即可)
【答案】EF=BC(或EC=BF或∠D=∠A或∠EFD=∠BCA 或∠DFB=∠ACE或DF∥AC)
【解析】解:∵AB=DE,∠B=∠E, ∴當(dāng)EF=BC(或EC=BF)時(shí),根據(jù)SAS可判定△ABC≌△DEF;
當(dāng)∠D=∠A時(shí),根據(jù)ASA可判定△ABC≌△DEF;
當(dāng)∠EFD=∠BCA (或∠DFB=∠ACE或DF∥AC),根據(jù)AAS可判定△ABC≌△DEF;
綜上所述,添加的條件可以是:EF=BC(或EC=BF或∠D=∠A或∠EFD=∠BCA 或∠DFB=∠ACE或DF∥AC).(答案不唯一)
所以答案是:EF=BC(或EC=BF或∠D=∠A或∠EFD=∠BCA 或∠DFB=∠ACE或DF∥AC).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】______和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,反過來,數(shù)軸上的每一個(gè)點(diǎn)必定表示一個(gè)_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鞋店要進(jìn)一批新鞋,你是店長,應(yīng)關(guān)注下列哪個(gè)統(tǒng)計(jì)量( )
A.平均數(shù)B.方差C.眾數(shù)D.中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F(xiàn)點(diǎn).若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△CDM周長的最小值為( )
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人走進(jìn)一家商店,進(jìn)門付l角錢,然后在店里購物花掉當(dāng)時(shí)他手中錢的一半,走出商店付1角錢;之后,他走進(jìn)第二家商店付1角錢,在店里花掉當(dāng)時(shí)他手中錢的一半, 走出商店付1角錢;他又進(jìn)第三家商店付l角錢,在店里花掉當(dāng)時(shí)他手中錢的一半,出店付1角錢;最后他走進(jìn)第四家商店付l角錢,在店里花掉當(dāng)時(shí)他手中錢的一半, 出店付1角錢,這時(shí)他一分錢也沒有了.該人原有錢的數(shù)目是角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)(x>0)的圖象經(jīng)過菱形對(duì)角線的交點(diǎn)A,且與邊BC交于點(diǎn)F,點(diǎn)A的坐標(biāo)為(4,2).
(1)求反比例函數(shù)的表達(dá)式;
(2)求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P是第二象限內(nèi)的點(diǎn),且點(diǎn)P到x軸的距離是4,到y(tǒng)軸的距離是3,則點(diǎn)P的坐標(biāo)是( )
A.(﹣4,3)
B.(4,﹣3)
C.(﹣3,4)
D.(3,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠AOB=90°,∠BOC=40°,則∠AOC的度數(shù)為( )
A.50°
B.50° 或120°
C.50°或130°
D.130°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com