【題目】如圖,已知點(diǎn)A是反比例函數(shù)的圖象在第一象限上的動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊使點(diǎn)C落在第二象限,且邊BC交x軸于點(diǎn)D,若與的面積之比為1:2,則點(diǎn)C的坐標(biāo)為
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△DAC、△ECB都是等邊三角形,AE、DC交于點(diǎn)M,DB、EC交于點(diǎn)N,DB、AE交于點(diǎn)P,連接MN,下列說法中正確的個(gè)數(shù)有( )
①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBC=30°,則∠AEB=80°
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,A(m,0)、B(0,n),m、n滿足(m-n)2+|m-|=0.C為AB的中點(diǎn),P是線段AB上一動(dòng)點(diǎn),D是x軸正半軸上一點(diǎn),且PO=PD,DE⊥AB于E.
(1)求∠OAB的度數(shù);
(2)設(shè)AB=4,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),PE的值是否變化?若變化,說明理由;若不變,請求PE的值;
(3)設(shè)AB=4,若∠OPD=45°,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在Rt△ABC中,∠C=90°,AC=BC,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在BE的延長線上,AD⊥BE。
(1)求證:∠DAE+∠ABE=45°
(2)若BE=6,求AD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
(1)觀察理解:如圖1,中,,,直線過點(diǎn),點(diǎn),在直線同側(cè),,,垂足分別為,,由此可得:,所以,又因?yàn)?/span>,所以,所以,又因?yàn)?/span>,所以( );(請?zhí)顚懭扰卸ǖ姆椒ǎ?/span>
(2)理解應(yīng)用:如圖2,,且,,且,利用(1)中的結(jié)論,請按照圖中所標(biāo)注的數(shù)據(jù)計(jì)算圖中實(shí)線所圍成的圖形的面積______;
(3)類比探究:如圖3,
(4)拓展提升:如圖4,點(diǎn),在的邊、上,點(diǎn),在內(nèi)部的射線上,、分別是、的外角.已知,.求證:;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,,的平分線與DC交于點(diǎn)E,,BF與AD的延長線交于點(diǎn)F,則BC等于
A. 2 B. C. 3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ABD中,∠BAC=∠ABD=90°,點(diǎn)E為AD邊上的一點(diǎn),且AC=AE,連接CE交AB于點(diǎn)G,過點(diǎn)A作AF⊥AD交CE于點(diǎn)F.
(1)求證:△AGE≌△AFC;
(2)若AB=AC,求證:AD=AF+BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線過點(diǎn)和,點(diǎn)P為x軸正半軸上的一個(gè)動(dòng)點(diǎn),連接AP,在AP右側(cè)作,且,點(diǎn)B經(jīng)過矩形AOED的邊DE所在的直線,設(shè)點(diǎn)P橫坐標(biāo)為t.
求拋物線解析式;
當(dāng)點(diǎn)D落在拋物線上時(shí),求點(diǎn)P的坐標(biāo);
若以A、B、D為頂點(diǎn)的三角形與相似,請直接寫出此時(shí)t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com