【題目】如圖,在等邊△ABC中,BD=CE,將線段AE沿AC翻折,得到線段AM,連結(jié)EM交AC于點(diǎn)N,連結(jié)DM、CM以下說法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正確的有( 。
A. 1個B. 2個C. 3個D. 4個
【答案】D
【解析】
由△ABD≌△ACE,△AEC≌△AMC,△ABC是等邊三角形可以對①②進(jìn)行判斷,由AC垂直平分EM和直角三角形的性質(zhì)可對③進(jìn)行判斷,由△ADM是等邊三角形,可對④進(jìn)行判斷.
∵△ABC是等邊三角形,
∴AB=AC,∠B=∠BAC=∠ACB=60°,
∵BD=CE,
∴△ABD≌△ACE,
∴AD=AE,∠BAD=∠EAC,
∵△AEC沿AC翻折得到△AMC,
∴△AEC≌△AMC,
∴AE=AM,∠ECA=∠MCA,
∴AD=AM,∠MCA=60°,故①②正確,
∵△AEC沿AC翻折得到△AMC,
∴AE=AM,EC=CM,
∴點(diǎn)A、C在EM的垂直平分線上,
∴AC垂直平分EM,
∴∠ENC=90°,
∵∠MCA=60°,
∴∠NMC=30°,
∴CM=2CN,故③正確,
∵∠BAD=∠EAC,∠ECA=∠MCA,
∴∠BAD=∠MCA,
∵∠BAD+∠DAC=60°,
∴∠DAC+∠CAM=60°,
即∠DAM=60°,又AD=AM,
∴△ADM是等邊三角形,
∴MA=DM,故④正確,
綜上所述,這四句話都正確,
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠B=50°,P 是邊 AB 上的一個動點(diǎn)(不與頂點(diǎn) A 重合),則∠BPC 的度數(shù)可能是
A. 50° B. 80° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B. F. C.E在一條直線上(點(diǎn)F,C之間不能直接測量),點(diǎn)A,D在直線l的異側(cè),測得AB=DE,AB∥DE,AC∥DF.
(1)求證:△ABC≌△DEF;
(2)若BE=13m,BF=4m,求FC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中,裝有三個分別標(biāo)記為“1”、“2”、“3”的球,這三個球除了標(biāo)記不同外,其余均相同.?dāng)噭蚝螅瑥闹忻鲆粋球,記錄球上的標(biāo)記后放回袋中并攪勻,再從中摸出一個球,再次記錄球上的標(biāo)記.
(1)請列出上述實(shí)驗中所記錄球上標(biāo)記的所有可能的結(jié)果;
(2)求兩次記錄球上標(biāo)記均為“1”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點(diǎn)P是線段AB上的動點(diǎn)(不與A、B重合),過點(diǎn)P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點(diǎn)C.
(1)求a、b的值
(2)求線段PC長的最大值;
(3)若△PAC為直角三角形,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化生活環(huán)境,小蘭的爸爸要在院墻外的一塊空地上修建一個矩形花圃.如圖所示,矩形花圃的一邊利用長10米的院墻,另外三條邊用籬笆圍成,籬笆的總長為32米.設(shè)AB的長為x米,矩形花圃的面積為y平方米.
(1)用含有x的代數(shù)式表示BC的長,BC= ;
(2)求y與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍;
(3)當(dāng)x為何值時,y有最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市有三個景區(qū)是人們節(jié)假日游玩的熱點(diǎn)景區(qū),某學(xué)校對七(1)班學(xué)生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調(diào)查結(jié)果繪制了如下不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:
(1)九(1)班現(xiàn)有學(xué)生__________人,在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數(shù)為__________;
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校七年級有1000名學(xué)生,求計劃“五一”小長假隨父母到這三個景區(qū)游玩的學(xué)生多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com