將拋物線 向右平移2個(gè)單位后,所得拋物線的頂點(diǎn)坐標(biāo)是_________;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,已知拋物線y=ax2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,且頂點(diǎn)M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于C、D兩點(diǎn),與原拋物線交于點(diǎn)P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)如圖②,以點(diǎn)A為圓心,以線段OA為半徑畫圓,交拋物線y=ax2+bx+c的對(duì)稱軸于點(diǎn)B,連接AB,若將拋物線向右平移m(m>0)個(gè)單位后,B點(diǎn)的對(duì)應(yīng)點(diǎn)為B′,A點(diǎn)的對(duì)應(yīng)點(diǎn)為A′點(diǎn),且滿足四邊形BAA′B′為菱形,平移后的拋物線的對(duì)稱軸與菱形的對(duì)角線BA′交于點(diǎn)E,在x軸上是否存在一點(diǎn)F,使得以E、F、A′為頂點(diǎn)的三角形與△BAE相似?若存在,求出F點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線①經(jīng)過(guò)點(diǎn)A(-1,0)、B(4,5)、C(0,-3),其對(duì)稱軸與直線BC交于點(diǎn)P.
(1)求拋物線①的表達(dá)式及點(diǎn)P的坐標(biāo);
(2)將拋物線①向右平移1個(gè)單位后再作上下平移,得到的拋物線②恰好過(guò)點(diǎn)P,求上下平移的方向和距離;
(3)設(shè)拋物線②的頂點(diǎn)為D,與y軸的交點(diǎn)為E,試求∠EDP的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,將2個(gè)正方形并排組成矩形OABC,使點(diǎn)B落到x軸的正半軸上且OC=
5

(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=ax2+
5
2
x
過(guò)矩形OABC的頂點(diǎn)C.
①求a的值;
②將拋物線向右平移m個(gè)單位,使平移后得到的拋物線與線段CB無(wú)交點(diǎn),求m的取值范圍.(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田)如圖,拋物線y=ax2+bx+c的開口向下,與x軸交于點(diǎn)A(-3,0)和點(diǎn)B(1,0).與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線的解析式;
②將拋物線向右平移,使得平移后的拋物線與原拋物線交于點(diǎn)P,且∠PAB=∠DAC,求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•桂林)已知拋物線的頂點(diǎn)為(0,4)且與x軸交于(-2,0),(2,0).

(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個(gè)單位,設(shè)平移后拋物線的頂點(diǎn)為D,與x軸的交點(diǎn)為A、B,與原拋物線的交點(diǎn)為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時(shí),求此時(shí)k的值;
②是否存在這樣的k值,使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案