【題目】方程2x﹣4=0的解也是關于x的方程x2+mx+2=0的一個解,則m的值為 .
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,點M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,則∠B=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3),
(1)求二次函數y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出P點坐標;若不存在,請說明理由;
(3)平行于x軸的一條直線交拋物線于M,N兩點,若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線L: 與x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點M從A點以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點的坐標;
(2)求△COM的面積S與M的移動時間t之間的函數關系式;
(3)當t為何值時△COM≌△AOB,并求此時M點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD內有一點P,PA=3,PB=2,PC=1,求∠BPC的度數.
分析:根據已知條件比較分散的特點,我們可以通過旋轉變換將分散的已知條件集中在一起,于是將△BPC繞點B逆時針旋轉90°,得到了△BP′A(如圖2),然后連結PP′,這時再分別求出∠BP′P和∠AP′P的度數.
解答:(1)請你根據以上分析再通過計算求出圖2中∠BPC的度數;
(2)如圖3,若在正六邊形ABCDEF內有一點P,且PA=2,PB=4,PC=2,求∠BPC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AOB是一條直線,OC是∠AOD的平分線,OE 是∠BOD的平分線.
(1)若∠AOE=140°,求∠AOC的度數;
(2)若∠EOD :∠COD=2 : 3,求∠COD的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com