四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心______ 點(diǎn),按順時(shí)針方向旋轉(zhuǎn)______ 度得到;
(3)若BC=8,DE=6,求△AEF的面積.

【答案】分析:(1)根據(jù)正方形的性質(zhì)得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易證得△ADE≌△ABF;
(2)由于△ADE≌△ABF得∠BAF=∠DAE,則∠BAF+∠EBF=90°,即∠FAE=90°,根據(jù)旋轉(zhuǎn)的定義可得到△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時(shí)針方向旋轉(zhuǎn)90 度得到;
(3)先利用勾股定理可計(jì)算出AE=10,再根據(jù)△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時(shí)針方向旋轉(zhuǎn)90 度得到AE=AF,∠EAF=90°,然后根據(jù)直角三角形的面積公式計(jì)算即可.
解答:(1)證明:∵四邊形ABCD是正方形,
∴AD=AB,∠D=∠ABC=90°,
而F是CB的延長線上的點(diǎn),
∴∠ABF=90°,
在△ADE和△ABF中
,
∴△ADE≌△ABF(SAS);

(2)解:∵△ADE≌△ABF,
∴∠BAF=∠DAE,
而∠DAE+∠EAB=90°,
∴∠BAF+∠EAB=90°,即∠FAE=90°,
∴△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時(shí)針方向旋轉(zhuǎn)90 度得到;
故答案為A、90;

(3)解:∵BC=8,
∴AD=8,
在Rt△ADE中,DE=6,AD=8,
∴AE==10,
∵△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時(shí)針方向旋轉(zhuǎn)90 度得到,
∴AE=AF,∠EAF=90°,
∴△AEF的面積=AE2=×100=50(平方單位).
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了全等三角形的判定與性質(zhì)以及勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連接CD.
精英家教網(wǎng)
(1)填空:如圖1,AC=
 
,BD=
 
;四邊形ABCD是
 
梯形;
(2)請寫出圖1中所有的相似三角形;(不含全等三角形)
(3)如圖2,若以AB所在直線為軸,過點(diǎn)A垂直于AB的直線為軸建立如圖2的平面直角坐標(biāo)系,保持△ABD不動(dòng),將△ABC向x軸的正方向平移到△FGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,△FBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題學(xué)習(xí):
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點(diǎn),則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(3)如圖3,梯形ABCD中,AD∥BC,對角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點(diǎn).四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
S1=2S2
S1=2S2
;
(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點(diǎn),H、F分別是邊形AD、BC上的點(diǎn),且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省中考真題 題型:解答題

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊 AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連結(jié)CD.
(1)填空:如圖1,AC= _____,BD=_____ ;四邊形ABCD是_____ 梯形.
(2)請寫出圖1中所有的相似三角形(不含全等三角形)
(3)如圖2,若以AB所在直線為x軸,過點(diǎn)A垂直于AB的直線為y軸建立如圖2的平面直角坐標(biāo)系,保持ΔABD不動(dòng),將ΔABC向x軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連結(jié)CD。
(1)填空:如圖1,AC=______,BD=______;四邊形ABCD是______梯形;
(2)請寫出圖1中所有的相似三角形(不含全等三角形);
(3)如圖2,若以AB所在直線為軸,過點(diǎn)A垂直于AB的直線為軸建立如圖2的平面直角坐標(biāo)系,保持ΔABD不動(dòng),將ΔABC向軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊

AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連結(jié)CD.

(1)填空:如圖9,AC=         ,BD=         ;四邊形ABCD是       梯形.

(2)請寫出圖9中所有的相似三角形(不含全等三角形).

(3)如圖10,若以AB所在直線為軸,過點(diǎn)A垂直于AB的直線為軸建立如圖10的平面直角坐標(biāo)系,保持ΔABD不動(dòng),將ΔABC向軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.

 


查看答案和解析>>

同步練習(xí)冊答案