【題目】如圖,△ABC中,CD⊥AB于點D,⊙D經(jīng)過點B,與BC交于點E,與AB交與點F.已知tanA= ,cot∠ABC= ,AD=8.

(1)求⊙D的半徑;
(2)求CE的長.

【答案】
(1)

【答案】解:∵CD⊥AB,AD=8,tanA=
在Rt△ACD中,tanA= = ,AD=8,CD=4,
在Rt△CBD,cot∠ABC= = ,BD=3,
∴⊙D的半徑為3


(2)

解:過圓心D作DH⊥BC,垂足為H,


∴BH=EH,
在Rt△CBD中∠CDB=90°,BC= =5,cos∠ABC= = ,
在Rt△BDH中,∠BHD=90°,cos∠ABC= = ,BD=3,BH=
∵BH=EH,
∴BE=2BH=
∴CE=BC﹣BE=5﹣ =


【解析】(1)根據(jù)三角函數(shù)的定義得出CD和BD,從而得出⊙D的半徑;
(2)過圓心D作DH⊥BC,根據(jù)垂徑定理得出BH=EH,由勾股定理得出BC,再由三角函數(shù)的定義得出BE,從而得出CE即可.
【考點精析】認真審題,首先需要了解垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧),還要掌握解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法))的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算或化簡:
(1)2cos30°﹣ +( 0+(﹣1)2017
(2)(1+ )÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC的頂點B在反比例函數(shù) 的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是(
A.12
B.4
C.12-3
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

數(shù)學活動課上,老師出了一道作圖問題:如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”

小艾的作法如下:

(1)在直線l上任取點A,以A為圓心,AP長為半徑畫。

(2)在直線l上任取點B,以B為圓心,BP長為半徑畫。

(3)兩弧分別交于點P和點M

(4)連接PM,與直線l交于點Q,直線PQ即為所求.

老師表揚了小艾的作法是對的.

請回答:小艾這樣作圖的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使得點A落在點A'處,當A'E⊥AC時,A'B=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在“626國際禁毒日”前組織七年級全體學生320人進行了一次“毒品預防知識”競賽,賽后隨機抽取了部分學生成績進行統(tǒng)計,制作如表頻數(shù)分布表和頻數(shù)分布直方圖,請根據(jù)圖表提供的信息,解答下列問題:

少分數(shù)段(x表示分數(shù))

頻數(shù)

頻率

50≤x<60

4

0.1

60≤x<70

a

0.2

70≤x<80

12

b

80≤x<90

10

0.25

90≤x<100

6

0.15


(1)表中a= , b= , 并補全直方圖
(2)若用扇形統(tǒng)計圖描述此成績分布情況,則分數(shù)段80≤x<100對應扇形的圓心角度數(shù)是;
(3)請估計該年級分數(shù)在60≤x<100的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,攔水壩的橫斷面為梯形ABCD,AB∥CD,壩頂寬DC為6米,壩高DG為2米,迎水坡BC的坡角為30°,壩底寬AB為(8+2 )米.
(1)求背水坡AD的坡度;
(2)為了加固攔水壩,需將水壩加高2米,并且保持壩頂寬度不變,迎水坡和背水坡的坡度也不變,求加高后壩底HB的寬度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊△ABC,請用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)作△ABC的外心O;
(2)設(shè)D是AB邊上一點,在圖中作出一個正六邊形DEFGHI,使點F,點H分別在邊BC和AC上.

查看答案和解析>>

同步練習冊答案