【題目】閱讀如下材料,然后解答后面的問題:已知直線l1y=﹣2x2和直線l2y=﹣2x+4如圖所示,可以看到直線l1l2,且直線l2可以由直線l1向上平移6個長度單位得到,直線l2可以由直線l1向右平移3個長度單位得到.這樣,求直線l2的函數(shù)表達式,可以由直線l1的函數(shù)表達式直接得到.即:如果將直線l1向上平移6的長度單位后得到l2,得l2的函數(shù)表達式為:y=﹣2x2+6,即y=﹣2x+4;如果將直線l1向右平移3的長度單位后得到得l2,l2的函數(shù)表達式為:y=﹣2x3)﹣2,即y=﹣2x+4

1)將直線y2x3向上平移2個長度單位后所得的直線的函數(shù)表達式是   ;

2)將直線y3x+1向右平移mm0)兩個長度單位后所得的直線的函數(shù)表達式是   ;

3)已知將直線yx+1向左平移nn0)個長度單位后得到直線yx+5,則n   

【答案】1y2x1;(2y3x3m+1;(38

【解析】

1)利用一次函數(shù)圖象上加下減的平移規(guī)律求解即可;

2)利用一次函數(shù)圖象左加右減的平移規(guī)律求解即可;

3)利用一次函數(shù)圖象左加右減的平移規(guī)律列出關于n的方程,求解即可.

1)將直線y2x3向上平移2個長度單位后所得的直線的函數(shù)表達式是y2x3+2,即y2x1

故答案為y2x1;

2)將直線y3x+1向右平移mm0)兩個長度單位后所得的直線的函數(shù)表達式是y3xm+1,即y3x3m+1

故答案為y3x3m+1

3)∵將直線yx+1向左平移nn0)個長度單位后得到直線yx+n+1,即yx+n+1,

n+15,解得n8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的說理過程:如圖,在四邊形中,,分別是,延長線上的點,連接,分別交,于點,.已知,.說明理由.

理由:(已知),

(______),

(等量代換).

(______).

(______).

(______),

(______).

(______).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校的大學生自愿者參與服務工作,計劃組織全校自愿者統(tǒng)一乘車去某地.若單獨調(diào)配座客車若干輛,則空出個座位,若只調(diào)配座客車若干輛,則用車數(shù)量將增加,并有人沒有座位.

(1)計劃調(diào)配座客車多少輛?該大學共有多少名自愿者?(列方程組解答)

(2)若同時調(diào)配座和座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解本校學生每周參加課外輔導班的情況,隨機調(diào)査了部分學生一周內(nèi)參加課外輔導班的學科數(shù),并將調(diào)查結果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A0個學科,B1個學科,C2個學科,D3個學科,E4個學科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:

1)請將圖2的統(tǒng)計圖補充完整;

2)根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是   個學科;

3)若該校共有2000名學生,根據(jù)以上調(diào)查結果估計該校全體學生一周內(nèi)參加課外輔導班在3個學科(含3個學科)以上的學生共有   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知長方形OABC的頂點Ax軸上,頂點Cy軸上,OA18,OC12,D、E分別為OABC上的兩點,將長方形OABC沿直線DE折疊后,點A剛好與點C重合,點B落在點F處,再將其打開、展平.

1)點B的坐標是   ;

2)求直線DE的函數(shù)表達式;

3)設動點P從點D出發(fā),以1個單位長度/秒的速度沿折線D→A→B→C向終點C運動,運動時間為t秒,求當SPDE2SOCDt的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點在坐標軸上,的中點,四邊形是矩形,四邊形是正方形,若點的坐標為,則點的坐標為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC的平分線交AABC的外接圓于點D,交BC于點F,ABC的平分線交AD于點E.

(1)求證:DE=DB.

(2)若∠BAC=90°,BD=4,求ABC外接圓的半徑;

(3)若BD=6,DF=4,求AD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的直徑,外一點,點,過點作的切線,交點,,作點,交點.

求證:的切線;

求證:

查看答案和解析>>

同步練習冊答案