【題目】已知拋物線經(jīng)過點(2,3),且頂點坐標(biāo)為(1,1),求這條拋物線的解析式.

【答案】解:∵頂點坐標(biāo)為(1,1),
設(shè)拋物線為y=a(x﹣1)2+1,
∵拋物線經(jīng)過點(2,3),
∴3=a(2﹣1)2+1,
解得:a=2.
∴y=2(x﹣1)2+1=2x2﹣4x+3
【解析】由于已知拋物線的頂點坐標(biāo),則可設(shè)頂點式y(tǒng)=a(x+1)2+2,然后把(0,4)代入求出a的值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程(x﹣3)2=2(x﹣3)的根是(
A.2
B.3
C.2,3
D.5,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,對稱軸最多的是( 。

A. 平行四邊形B. 矩形C. 等邊三角形D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年父親的年齡是兒子年齡的3倍,5年前父親的年齡是兒子年齡的4倍.設(shè)今年兒子的年齡為x歲,則下列式子正確的是(

A. 4x5=3(x5)B. 4x+5=3(x+5)

C. 3x+5=4(x+5)D. 3x5=4(x5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今夏,十堰市王家河村瓜果喜獲豐收,果農(nóng)王二胖收獲西瓜20噸,香瓜12噸,現(xiàn)計劃租用甲、乙兩種貨車共8輛將這批瓜果全部運往外地銷售,已知一輛甲種貨車可裝西瓜4噸和香瓜1噸,一輛乙種貨車可裝西瓜和香瓜各2噸.
(1)果農(nóng)王二胖如何安排甲、乙兩種貨車可一次性地運到銷售地?有幾種方案?
(2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果農(nóng)王二胖應(yīng)選擇哪種方案,使運輸費最少?最少運費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格x(元/個)的函數(shù)關(guān)系如圖所示.

(1)當(dāng)30x60時,求y與x的函數(shù)關(guān)系式;

(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關(guān)系式;

(3)銷售價格應(yīng)定為多少元時,獲得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠擬建一座平面圖形為矩形且面積為200平方米的三級污水處理池(平面圖如圖ABCD所示).由于地形限制,三級污水處理池的長、寬都不能超過16米.如果池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價為每米300元,池底建造單價為每平方米80元.(池墻的厚度忽略不計)當(dāng)三級污水處理池的總造價為47200元時,求池長x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l x軸、y軸分別交于點M,N,高為3的等邊三角形ABC,邊BCx軸上,將此三角形沿著x軸的正方向平移,在平移過程中,得到A1B1C1,當(dāng)點B1與原點重合時,解答下列問題:

1)求出點A1的坐標(biāo),并判斷點A1是否在直線l上;

2)求出邊A1C1所在直線的解析式;

3)在坐標(biāo)平面內(nèi)找一點P,使得以P、A1C1、M為頂點的四邊形是平行四邊形,請直接寫出P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將數(shù)據(jù)219000000用科學(xué)記數(shù)法表示為( 。

A. 0.219×109B. 2.19×109C. 2.19×108D. 21.9×107

查看答案和解析>>

同步練習(xí)冊答案