作业宝如圖,直線數(shù)學(xué)公式經(jīng)過(guò)點(diǎn)B(數(shù)學(xué)公式,2),且與x軸交于點(diǎn)A.將拋物線數(shù)學(xué)公式沿x軸作左右平移,記平移后的拋物線為C,其頂點(diǎn)為P.
(1)求∠BAO的度數(shù);
(2)直線AB交拋物線數(shù)學(xué)公式的右側(cè)于點(diǎn)D,問(wèn)點(diǎn)B是AD中點(diǎn)嗎?試說(shuō)明理由;
(3)拋物線C與y軸交于點(diǎn)E,與直線AB交于兩點(diǎn),其中一個(gè)交點(diǎn)為F.當(dāng)線段EF∥x軸時(shí),求平移后的拋物線C對(duì)應(yīng)的函數(shù)關(guān)系式.

解:(1)設(shè)直線與y軸交于點(diǎn)M,
將x=-,y=2代入y=x+b得b=3,
∴y=x+3,
當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí)x=-3
∴A(-3,0),M(0,3);
∴OA=3,OM=3,
∴tan∠BAO==
∴∠BAO=30°.

(2)聯(lián)立直線AB和拋物線的解析式,有:
,解得:、
∴D(,);
已知:A(-3,0)、B(,2),顯然點(diǎn)B不是AD的中點(diǎn).

(3)設(shè)拋物線C的解析式為y=(x-t)2,則P(t,0),E(0,t2),
∵EF∥x軸且F在拋物線C上,根據(jù)拋物線的對(duì)稱(chēng)性可知F(2t,t2),
把x=2t,y=t2代入y=x+3
t+3=t2
解得t1=-,t2=3
∴拋物線C的解析式為y=(x+2或y=(x-32
分析:(1)首先將B點(diǎn)坐標(biāo)代入直線AB的解析式中,在確定出b值后進(jìn)而能得出直線AB與x、y軸的交點(diǎn)坐標(biāo),若設(shè)直線AB與y軸的交點(diǎn)為M,那么在Rt△AOM中,根據(jù)OA、OM的長(zhǎng)可求出∠OAB的正切值,由此得出∠BAO的度數(shù).
(2)聯(lián)立直線AB和拋物線的解析式,在求出點(diǎn)D的坐標(biāo)后,根據(jù)A、B、D三點(diǎn)的坐標(biāo)來(lái)判斷點(diǎn)B是否為AD的中點(diǎn).
(3)根據(jù)“左加右減、上加下減”的平移規(guī)律先設(shè)出拋物線C的表達(dá)式,即可得出E點(diǎn)的坐標(biāo);點(diǎn)E為拋物線C與y軸的交點(diǎn),點(diǎn)F為直線AB與拋物線C的交點(diǎn),也可以理解為點(diǎn)E、F都在拋物線C的圖象上,若EF∥x軸,那么點(diǎn)E、F必關(guān)于拋物線對(duì)稱(chēng)軸對(duì)稱(chēng),首先根據(jù)點(diǎn)E的坐標(biāo)和拋物線對(duì)稱(chēng)軸方程表示出點(diǎn)F的坐標(biāo),再代入直線AB的解析式中進(jìn)行求解即可.
點(diǎn)評(píng):此題的難度適中,在(1)題中,求出直線AB的解析式,題目也就解決了大半;(2)題著重考查的是一次函數(shù)與二次函數(shù)的交點(diǎn)坐標(biāo)的求法;(3)題中,點(diǎn)E、F關(guān)于拋物線對(duì)稱(chēng)軸對(duì)稱(chēng)是不容易想到的地方,此外,二次函數(shù)的平移規(guī)律也是需要牢記的內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過(guò)點(diǎn)A(4,0)和點(diǎn)B(0,4),且與二次函數(shù)y=ax2的圖象在第一象限內(nèi)相交于點(diǎn)P,若△AOP的面積為
92
,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過(guò)點(diǎn)M(3,0),且平行于y軸,與拋物線y=ax2交于點(diǎn)N,若S△OMN=9,則a的值是(  )
A、
2
3
B、-
2
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過(guò)點(diǎn)A(-3,1)、B(0,-2),將該直線向右平移2個(gè)單位得到直線l′.
(1)在圖中畫(huà)出直線l′的圖象;
(2)求直線l′的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,直線L經(jīng)過(guò)點(diǎn)A(0,-1),且與雙曲線c:y=
mx
交于點(diǎn)B(2,1).
(1)求雙曲線c及直線L的解析式;
(2)已知P(a-1,a)在雙曲線c上,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•天河區(qū)一模)如圖,直線l經(jīng)過(guò)點(diǎn)A(1,0),且與曲線y=
m
x
(x>0)交于點(diǎn)B(2,1).過(guò)點(diǎn)P(p,p-1)(p≥2)作x軸的平行線分別交曲線y=
m
x
(x>0)和y=-
m
x
(x<0)于M,N兩點(diǎn).
(1)求m的值及直線l的解析式;
(2)是否存在實(shí)數(shù)p,使得S△AMN=4S△APM?若存在,請(qǐng)求出所有滿足條件的p的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案