【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,點D在線段AB上,從點B出發(fā),以2cm/s的速度向終點A運動,設點D的運動時間為t秒。
(1)點D在運動t秒后,BD= cm(用含有t的式子表示)
(2)AB=cm,AB邊上的高為cm;
(3)點D在運動過程中,當△BCD為等腰三角形時,求t的值.
【答案】(1);(2)50;24;(3)t的值為15s或18s或12.5s.
【解析】
(1)根據(jù)點D以2cm/s的速度向終點A運動,設點D的運動時間為t秒,即可表示出;
(2)利用勾股定理求出AB的長,再利用三角形面積公式即可求得AB邊上的高;
(3)分三種情況:①當BD=BC=30cm時得到2t=30,即可得到結果;
②當CD=CB=30cm時,作CE⊥AB于E,則,由(1)得CE=24,由勾股定理求出BE,即可得出結果;
③當DB=DC時,∠BCD=∠B,證明DA=DC,得出AD=DB=AB,即可得出結果.
(1) ∵點D以2cm/s的速度向終點A運動,設點D的運動時間為t秒
∴
故答案為:
(2)由勾股定理得,
設AB邊上的高為h,
∴,
解得:
故答案為:50;24.
(3) 分三種情況:
①當BD=BC=30cm時,2t=30
∴t=15(s)
②當CD=CB=30cm時,作CE⊥AB于E,如圖所示:
則
由(2)得,AB邊上的高CE=24,
在中,由勾股定理得:
∴
③當DB=DC時,∠BCD=∠B
∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,
∴∠ACD=∠A
∴DA=DC
∴AD=DB=AB=25(cm)
∴
綜上所述,t的值為15s或18s或12.5s.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米.如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,則小巷的寬度為( )
A.0.7米B.1.5米C.2.2米D.2.4米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數(shù)y=(k>0,x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2=10,則k的值是( 。
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD邊AD沿折痕AE折疊,使點D落在BC上的F處,已知AB=6,△ABF的面積為24,則EC等于( 。
A.2B.C.4D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉,當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了對學生進行革命傳統(tǒng)教育,紅旗中學開展了“清明節(jié)祭掃”活動.全校學生從學校同時出發(fā),步行米到達烈士紀念館.學校要求九班提前到達目的地,做好活動的準備工作.行走過程中,九(1)班步行的平均速度是其他班的倍,結果比其他班提前分鐘到達.分別求九(1)班、其他班步行的平均速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com