閱讀理解:通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小,與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化。類似地,可以在等腰三角形中,建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊長與腰長的比叫做頂角正對(duì)(sad)。如圖1,在⊿ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=。容易知道一個(gè)角的大小,與這個(gè)角的正對(duì)值也是相互唯一確定的。根據(jù)上述角的正對(duì)定義,解下列問題:
【小題1】計(jì)算:sad60°= ▲
【小題2】對(duì)于0°<A<90°,∠A的正對(duì)值sadA的取值范圍是 ▲ ;
【小題3】如圖2,已知△DEF中,∠E=90°,cosD=,試求sadD的值。
【小題1】根據(jù)正對(duì)定義,當(dāng)頂角為60°時(shí),等腰三角形底角為60°,則三角形為等邊三角形,則sad60°="1/1" =1
【小題2】當(dāng)∠A接近0°時(shí),sadα接近0,當(dāng)∠A接近180°時(shí),等腰三角形的底接近于腰的二倍,故sadα接近2.于是sadA的取值范圍是0<sadA<2.
【小題3】解法一:延長DE到M,使DM=DF,連接FM ……………………… 7分
在Rt△DEF中,設(shè)DE=4k,則DF=5k,
EF= ………………… 8分
∴ME=5k-4k=k
在Rt△EFM中,F(xiàn)M= … 10分
∴sadD= …………………………………………………… 12分
解法二:在Rt△DEF中,設(shè)DE=4k,則DF=5k,EF= ……… 7分
在DF上截取DN=DE=4k,過點(diǎn)N作NH⊥DE于H,連接EN …………………… 8分
則FN=k
∵△DNH∽△DFE ∴
∴HN=,DH=
∴EH=4k-=,
EN= …………… 10分
∴ ……………………………………………… 12分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
閱讀理解:通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小,與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化。類似地,可以在等腰三角形中,建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊長與腰長的比叫做頂角正對(duì)(sad)。如圖1,在⊿ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=。容易知道一個(gè)角的大小,與這個(gè)角的正對(duì)值也是相互唯一確定的。根據(jù)上述角的正對(duì)定義,解下列問題:
1.計(jì)算:sad60°= ▲
2.對(duì)于0°<A<90°,∠A的正對(duì)值sadA的取值范圍是 ▲ ;
3.如圖2,已知△DEF中,∠E=90°,cosD=,試求sadD的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建永安九年級(jí)學(xué)業(yè)質(zhì)量檢測(cè)考試數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀理解:通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小,與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化。類似地,可以在等腰三角形中,建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊長與腰長的比叫做頂角正對(duì)(sad)。如圖1,在⊿ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=。容易知道一個(gè)角的大小,與這個(gè)角的正對(duì)值也是相互唯一確定的。根據(jù)上述角的正對(duì)定義,解下列問題:
1.計(jì)算:sad60°= ▲
2.對(duì)于0°<A<90°,∠A的正對(duì)值sadA的取值范圍是 ▲ ;
3.如圖2,已知△DEF中,∠E=90°,cosD=,試求sadD的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
閱讀理解:通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小,與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化。類似地,可以在等腰三角形中,建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊與腰的比叫做頂角正對(duì)(sad)。如圖1,在⊿ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=底邊÷腰=。容易知道一個(gè)角的大小,與這個(gè)角的正對(duì)值也是相互唯一確定的。根據(jù)上述角的正對(duì)定義,解下列問題:
|
|
|
|
|
|
|
(3)如圖2,已知sinA=,其中∠A為銳角,
試求sadA的值。(蘭州中考題改編) 圖1 圖2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com