【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)與x軸交于點(diǎn)A(-4,0)、B(6,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)如圖l,求拋物線(xiàn)的解析式;
(2)如圖2,點(diǎn)P為第一象限拋物線(xiàn)上一點(diǎn),連接PC、PA,PA交y軸于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為t,△CPF的面積為S.求S與t的函數(shù)關(guān)系式(不要求寫(xiě)出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接BC,過(guò)點(diǎn)P作PD//y軸變BC于點(diǎn)D,點(diǎn)H為AF中點(diǎn),且點(diǎn)N(0,1),連接NH、BH,將∠NHB繞點(diǎn)H逆時(shí)針旋轉(zhuǎn),使角的一條邊H落在射線(xiàn)HF上,另一條邊HN變拋物線(xiàn)于點(diǎn)Q,當(dāng)BH=BD時(shí),求點(diǎn)Q坐標(biāo).
【答案】(1)拋物線(xiàn)的解析式為;
(2)S與t的函數(shù)關(guān)系式為;
(3)點(diǎn)Q坐標(biāo)為(4,8).
【解析】試題分析:(1)直接用代入法求函數(shù)的解析式;(2)過(guò)點(diǎn)P作PR⊥y軸,交y軸于點(diǎn)R,過(guò)點(diǎn)P作PL⊥AB于點(diǎn)L,則點(diǎn)P(t, ),在Rt△PAL中,因?yàn)?/span>PL=AL= ,所以tan∠PAL=在Rt△FAO中,所以tan∠FAO= , 所以OF=12-2t,所以CF=CO- OF=12-(12-2t)=2t,所以 ;(3)延長(zhǎng)PD交x軸于點(diǎn)L,取OA的中點(diǎn)K,連接HK,過(guò)點(diǎn)H作HG⊥y軸于點(diǎn)G,OF=12-2t點(diǎn)H為AF的中點(diǎn) HK ⊥OA ,所以HK=6-t=BL,因?yàn)?/span>HK=BL BH=BD ,所以△BHK≌△DBL ,所以BK=DL=8,直線(xiàn)BC的解析式為∴點(diǎn)D,DL=12-2t =8 t=2 ,所以點(diǎn)P(2,12),則點(diǎn)H(-2,4),tan∠AHK=tan∠HBK=,所以∠AHK=∠HBK ,∴∠AHB=90°,又因?yàn)椤?/span>NHB=∠PHQ ,所以∠NHQ=90°,過(guò)點(diǎn)Q作QM⊥HG于點(diǎn)M,所以∠HNG=∠QHM ,又因?yàn)辄c(diǎn)N(0,1),HG=2,所以GN=3,tan∠HNG=tan∠QHM =, ,設(shè)點(diǎn)Q(,) ,則QM=-4= ,所以HM= +2 ,所以 ,解得: ,所以 ∴點(diǎn)Q(4,8);
試題解析:
(1)解∵拋物線(xiàn)過(guò)點(diǎn)A(-4,0),B(6,0)
解得
∴拋物線(xiàn)解析式為
(2)過(guò)點(diǎn)P作PR⊥y軸,交y軸于點(diǎn)R,過(guò)點(diǎn)P作PL⊥AB于點(diǎn)L,如圖所示:
則點(diǎn)P(t, ),在Rt△PAL中
∵PL=AL=
∴tan∠PAL=
在Rt△FAO中,
∴tan∠FAO= ,
∴OF=12-2t
∴CF=CO- OF=12-(12-2t)=2t
∴
(3)延長(zhǎng)PD交x軸于點(diǎn)L,取OA的中點(diǎn)K,連接HK,過(guò)點(diǎn)H作HG⊥y軸于點(diǎn)G,如圖所示:
OF=12-2t點(diǎn)H為AF的中點(diǎn) HK ⊥OA
∴HK=6-t=BL
∵HK=BL BH=BD
∴△BHK≌△DBL
∴BK=DL=8
直線(xiàn)BC的解析式為
∴點(diǎn)D
DL=12-2t =8 t=2
∴點(diǎn)P(2,12)
∴點(diǎn)H(-2,4)
tan∠AHK=tan∠HBK=
∴∠AHK=∠HBK
∴∠AHB=90°
∵∠NHB=∠PHQ
∴∠NHQ=90°,
過(guò)點(diǎn)Q作QM⊥HG于點(diǎn)M,
∴∠HNG=∠QHM
∵點(diǎn)N(0,1),HG=2,
∴GN=3,tan∠HNG=tan∠QHM =,
設(shè)點(diǎn)Q(,)
QM=-4=
HM= +2
,
∴點(diǎn)Q(4,8)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折優(yōu)惠賣(mài)出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是()
A. 120元 B. 125元 C. 135元 D. 140元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線(xiàn)DE交AB于點(diǎn)E,交BC于點(diǎn)D,CD=3,則BC的長(zhǎng)為( )
A.6
B.9
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB=AC,D是AB上一點(diǎn),DE⊥BC于點(diǎn)E,ED的延長(zhǎng)線(xiàn)交CA的延長(zhǎng)線(xiàn)于點(diǎn)F.求證:△ADF是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備建一個(gè)面積為200平方米的矩形花圃,它的長(zhǎng)比寬多10米,設(shè)花圃的寬為x米,則可列方程為:( )
A. x(x-10)=200 B. 2x+2(x-10)=200
C. x(x+10)=200 D. 2x+2(x+10)=200
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,DE是邊AB的垂直平分線(xiàn),交AB于E、交AC于D,連接BD.
(1)若∠ABC=∠C,∠A=40°,求∠DBC的度數(shù);
(2)若AB=AC,且△BCD的周長(zhǎng)為18cm,△ABC的周長(zhǎng)為30cm,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)如圖①,BF垂直CE于點(diǎn)F,交CD于點(diǎn)G,試說(shuō)明AE=CG;
(2)如圖②,作AH垂直于CE的延長(zhǎng)線(xiàn),垂足為H,交CD的延長(zhǎng)線(xiàn)于點(diǎn)M,則圖中與BE相等的線(xiàn)段是 , 并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)22+(﹣4)+(﹣2)+4
(2)(﹣ +1 ﹣ )×(﹣24)
(3)3﹣6÷(﹣2)×|﹣ |
(4)2a﹣(3b﹣a)+b
(5)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2)
(6)(﹣ )×(﹣4)2﹣0.25×(﹣5)×(﹣4)3 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一只甲蟲(chóng)在5×5的方格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線(xiàn)運(yùn)動(dòng),它從A處出發(fā)看望B、C、D處的其它甲蟲(chóng).規(guī)定:向上向右走為正,向下向左走為負(fù),如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4).其中第一數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向,那么圖中
(1)A→C( , ),B→D( , );
(2)若這只甲蟲(chóng)的行走路線(xiàn)為A→B→C→D,請(qǐng)計(jì)算該甲蟲(chóng)走過(guò)的路程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com