已知二次函數(shù)的圖象與一次函數(shù)y=kx+1的圖象交于A,B兩點(diǎn)(A在B的左側(cè)),且A點(diǎn)坐標(biāo)為(-4,4).
(1)求一次函數(shù)的解析式;
(2)若平行于x軸的直線l過(0,-1)點(diǎn),試判斷以線段AB為直徑的圓與直線l的位置關(guān)系,并說明理由;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),得到的二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn).當(dāng)t為何值,過F,M,N三點(diǎn)的圓的面積最?

【答案】分析:(1)已知了一次函數(shù)的圖象經(jīng)過A點(diǎn),可將A點(diǎn)的坐標(biāo)代入一次函數(shù)中,即可求出一次函數(shù)的解析式.
(2)求直線與圓的位置關(guān)系需知道圓心到直線的距離和圓的半徑長(zhǎng).由于直線l平行于x軸,因此圓心到直線l的距離為1.因此只需求出圓的半徑,也就是求AB的長(zhǎng),根據(jù)(1)中兩函數(shù)的解析式即可求出B點(diǎn)的坐標(biāo),根據(jù)A、B兩點(diǎn)的坐標(biāo)即可求出AB的長(zhǎng).然后判定圓的半徑與1的大小關(guān)系即可.
(3)先設(shè)出平移后拋物線的解析式,不難得出平移后拋物線的對(duì)稱軸為x=2.因此過F,M,N三點(diǎn)的圓的圓心必在直線x=2上,要使圓的面積最小,那么圓心到F點(diǎn)的距離也要最小(設(shè)圓心為C),即F,C兩點(diǎn)的縱坐標(biāo)相同,因此圓的半徑就是2.C點(diǎn)的坐標(biāo)為(2,1)(可根據(jù)一次函數(shù)的解析式求出F點(diǎn)的坐標(biāo)).可設(shè)出平移后的拋物線的解析式,表示出MN的長(zhǎng),如果設(shè)對(duì)稱軸與x軸的交點(diǎn)為E,那么可表示出ME的長(zhǎng),然后在直角三角形MEC中根據(jù)勾股定理即可確定平移的距離.即t的值.(也可根據(jù)C點(diǎn)的坐標(biāo)求出M,N點(diǎn)的坐標(biāo),然后用待定系數(shù)法求出平移后的拋物線的解析式,經(jīng)過比較即可得出平移的距離,即t的值).
解答:解:(1)把A(-4,4)代入y=kx+1得:
∴一次函數(shù)的解析式為;

  (2)由,
解得
,
過A,B點(diǎn)分別作直線l的垂線,垂足為A',B',
,
∴直角梯形AA'B'B的中位線長(zhǎng)為,
過B作BH垂直于直線AA'于點(diǎn)H,則BH=A'B'=5,,
,
∴AB的長(zhǎng)等于AB中點(diǎn)到直線l的距離的2倍,
∴以AB為直徑的圓與直線l相切.

(3)(方法一) 平移后二次函數(shù)解析式為,
令y=0,得,,
∵過F,M,N三點(diǎn)的圓的圓心一定在平移后拋物線的對(duì)稱軸上,點(diǎn)C為定點(diǎn),B要使圓面積最小,圓半徑應(yīng)等于點(diǎn)F到直線x=2的距離,
此時(shí),半徑為2,面積為4π,
設(shè)圓心為C,MN與直線x=2交于點(diǎn)E,連接CM,則CE⊥MN,ME=NE,CE=OF=1,
在直角三角形CEM中,,
,而MN=|x1-x2|=,從而求得 ,
∴當(dāng)時(shí),過F,M,N三點(diǎn)的圓面積最小;

(方法二) 設(shè)圓心為C,半徑為r,
=0,得,
∴ME=NE=2
則CE===,
∴點(diǎn)C(2,),
又F(0,1)∴由CF=r得:
整理得,
∴當(dāng)時(shí),過F,M,N三點(diǎn)的圓面積最小.
點(diǎn)評(píng):此題主要考查了求一次函數(shù)解析式、二次函數(shù)的平移、勾股定理,二次函數(shù)的最值,直線與圓的位置關(guān)系,解二元二次方程組等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵,綜合考查了學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸交點(diǎn)的橫坐標(biāo)分別為x1=4,x2=-2,且圖象經(jīng)過點(diǎn)(0,-4),求這個(gè)二次函數(shù)的解析式,并求出最大(或最。┲担

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸兩交點(diǎn)間的距離為2,若將圖象沿y軸方向向上平移3個(gè)單位,則圖象恰好經(jīng)過原點(diǎn),且與x軸兩交點(diǎn)間的距離為4,求原二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,a),與x軸的交點(diǎn)坐標(biāo)為(b,0)和(-b,0),若a>0,則函數(shù)解析式為( 。
A、y=
a
b2
x2+a
B、y=-
a
b2
x2+a
C、y=-
a
b2
x2-a
D、y=
a
b2
x2-a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0),且與直線y=kx-4交y軸于點(diǎn)C. 
(1)求這個(gè)二次函數(shù)的解析式;
(2)如果直線y=kx-4經(jīng)過二次函數(shù)的頂點(diǎn)D,且與x軸交于點(diǎn)E,△AEC的面積與△BCD的面積是否相等?如果相等,請(qǐng)給出證明;如果不相等,請(qǐng)說明理由;
(3)求sin∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸交于A(-2,0),B(3,0)兩點(diǎn),且函數(shù)有最大值為2,求二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案