【題目】如圖,在四邊形ABCD中,ABBC2,CD3DA1,且ABBCB

求:(1)∠BAD的度數(shù);

2)四邊形ABCD的面積.

【答案】1)∠BAD135°;(2)四邊形ABCD的面積為2+

【解析】

1)由于∠B90°,ABBC2,利用勾股定理可求AC,并可求∠BAC45°,而CD3,DA1,易得AC2+DA2CD2,可證ACD是直角三角形,∠CAD90°,從而易求∠BAD的度數(shù);

2)由三角形的面積公式即可得出結(jié)果.

1)連接AC,

∵∠B90°,ABBC2

AC2,∠BAC45°,

又∵CD3DA1,

AC2+DA28+19,CD29

AC2+DA2CD2,

∴△ACD是直角三角形,

∴∠CAD90°,

∴∠BAD45°+90°135°

2)四邊形ABCD的面積=△ABC的面積+ACD的面積=×2×2+×1×22+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片ABCD沿EF折疊后,EDBC于點(diǎn)G,點(diǎn)D、C分別落在點(diǎn)D′、C′位置上,若∠EFG=55°,∠BGE=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題的逆命題成立的有( )

勾股數(shù)是三個(gè)正整數(shù) 全等三角形的三條對應(yīng)邊分別相等

如果兩個(gè)實(shí)數(shù)相等,那么它們的平方相等 平行四邊形的兩組對角分別相等

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點(diǎn)依次為A1,A2,A3,A4,A5,…,則頂點(diǎn)A55的坐標(biāo)是( )

A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+2180°,∠3B,

1)證明:EFAB

2)試判斷∠AED與∠C的大小關(guān)系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工程隊(duì)承包一項(xiàng)工程,如果甲工程隊(duì)單獨(dú)施工,恰好如期完成;如果乙工程隊(duì)單獨(dú)施工就要超過6個(gè)月才能完成,現(xiàn)在甲、乙兩隊(duì)先共同施工4個(gè)月,剩下的由乙隊(duì)單獨(dú)施工,則恰好如期完成.

(1)問原來規(guī)定修好這條公路需多少長時(shí)間?

(2)現(xiàn)要求甲、乙兩個(gè)工程隊(duì)都參加這項(xiàng)工程,但由于受到施工場地條件限制,甲、乙兩工程隊(duì)不能同時(shí)施工.已知甲工程隊(duì)每月的施工費(fèi)用為4萬元,乙工程隊(duì)每月的施工費(fèi)用為2萬元.為了結(jié)算方便,要求:甲、乙的施工時(shí)間為整數(shù)個(gè)月,不超過15個(gè)月完成.當(dāng)施工費(fèi)用最低時(shí),甲、乙各施工了多少個(gè)月?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓心角為135°的扇形OAB中,半徑OA=2cm,點(diǎn)C,D為 的三等分點(diǎn),連接OC,OD,AC,CD,BD,則圖中陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2D、E分別為AB、AC的中點(diǎn),延長BC至點(diǎn)F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市舉行店慶活動(dòng),對甲、乙兩種商品實(shí)行打折銷售,打折前,購買2件甲商品和3件乙商品需要180元;購買1件甲商品和4件乙商品需要200元,而店慶期間,購買10件甲商品和10件乙商品僅需520元,這比打折前少花多少錢?

查看答案和解析>>

同步練習(xí)冊答案