【題目】如圖,AB是⊙O的直徑,過點(diǎn)A作⊙O的切線并在其上取一點(diǎn)C,連接OC交⊙O于點(diǎn)D,BD的延長線交AC于E,連接AD,
(1)求證:CD2=CEAC;
(2)若AB=4,AC=4,求AE的長.
【答案】(1)見解析;(2)2
【解析】
(1)通過證明△CDE∽△CAD可得結(jié)論.
(2)利用相似三角形的性質(zhì),勾股定理求出AC,CE即可解決問題.
(1)證明:∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∵AC為⊙O的切線,
∴BA⊥AC,
∴∠BAC=90°,即∠BAD+∠CAD=90°,
∴∠B=∠CAD,
∵OB=OD,
∴∠B=∠ODB,
而∠ODB=∠CDE,
∴∠B=∠CDE,
∴∠CAD=∠CDE,
而∠ECD=∠DCA,
∴△CDE∽△CAD;
∴,
∴CD2=CEAC.
(2)解:在Rt△AOC中,∵AB=4,
∴OA=2,AC=4,
∴O=,
∴CD=OC﹣OD=6﹣2=4,
∵CD2=CEAC,
∴CE=2,
∴AE=AC﹣CE=4﹣2=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,B,C的坐標(biāo)分別為A(﹣2,3),B(﹣3,1),C(0,1)請解答下列問題:
(1)△ABC與△A1B1C1關(guān)于原點(diǎn)O成中心對稱,畫出△A1B1C1并直接寫出點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo);
(2)畫出△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C,并求出線段AC旋轉(zhuǎn)時(shí)掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=3,AC=5,點(diǎn)D為線段AC上一動點(diǎn),將線段BD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)B的對應(yīng)點(diǎn)為E,連接AE,則AE長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊O在x軸上,OC在y軸上,OA=6,OC=4,PC=BC.將矩形OABC繞點(diǎn)O以每秒45°的速度沿順時(shí)針方向旋轉(zhuǎn),則第2019秒時(shí),點(diǎn)P的坐標(biāo)為( )
A.(3,)B.(2,﹣1)
C.(,﹣3)D.(﹣1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1和
其中正確結(jié)論的是_____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E,F分別在AB,AD上,且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H,下列結(jié)論:
①△AED≌△DFB;②S四邊形 BCDG=CG2;③若AF=2DF,則BG=6GF
,其中正確的結(jié)論
A.只有①②.B.只有①③.C.只有②③.D.①②③.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長AB,DC交于點(diǎn)P,若PB=OB,CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個(gè)點(diǎn)能與另外兩個(gè)點(diǎn)構(gòu)成直角三角形,則稱這個(gè)點(diǎn)為另外兩個(gè)點(diǎn)的勾股點(diǎn).如矩形OBCD中,點(diǎn)C為O,B兩點(diǎn)的勾股點(diǎn),已知OD=4,在DC上取點(diǎn)E,DE=8.
(1)如果點(diǎn)E是O,B兩點(diǎn)的勾股點(diǎn)(點(diǎn)E不在點(diǎn)C), 試求OB的長;
(2)如果OB=12,分別以OB,OD為坐標(biāo)軸建立如圖2的直角坐標(biāo)系,在x軸上取點(diǎn)F(5,0).在線段DC上取點(diǎn)P, 過點(diǎn)P的直線l∥y軸,交x軸于點(diǎn)Q.設(shè)DP=t.
①當(dāng)點(diǎn)P在DE之間,以EF為直徑的圓與直線l相切,試求t的值;
②當(dāng)直線l上恰好有2點(diǎn)是E,F兩點(diǎn)的勾股點(diǎn)時(shí),試求相應(yīng)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC平移到△A'B'C'的位置,其中∠C=90°使得點(diǎn)C'與△ABC的內(nèi)心重合,已知AC=4,BC=3,則陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com