如圖,一個動點A在平面直角坐標(biāo)系中作折線運動,第一次從點(-1,-1)到A1(0,1),第二次運動到A2(3,-1),第三次運動到A3(8,1),第四次運動到A4(15,-1)…,按這樣的運動規(guī)律,經(jīng)過第13次運動后,動點A13的坐標(biāo)是
(168,1)
(168,1)
分析:根據(jù)已知的點的坐標(biāo)變化規(guī)律得出橫縱坐標(biāo)的變化進而得出動點A13的坐標(biāo).
解答:解:∵A1(0,1),第二次運動到A2(3,-1),第三次運動到A3(8,1),第四次運動到A4(15,-1)…,
∴橫坐標(biāo)為:0=12-1,3=22-1,8=32-1,15=42-1…縱坐標(biāo)為:1,-1,1,-1…變化,則第奇數(shù)個為正數(shù),第偶數(shù)個為負數(shù),
∴按這樣的運動規(guī)律,經(jīng)過第13次運動后,動點A13的橫坐標(biāo)為:132-1=168,縱坐標(biāo)為:1,
故動點A13的坐標(biāo)是(168,1).
故答案為:(168,1).
點評:此題主要考查了點的變化規(guī)律,根據(jù)已知的點的坐標(biāo)得出橫縱坐標(biāo)變化規(guī)律是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•開平區(qū)二模)如圖,在梯形ABCD中,AD∥BC,AB=DC,過點D作DE⊥BC,垂足為E,并延長DE至F,使EF=DE.連接BF、CF、AC.
(1)求證:四邊形ABFC是平行四邊形;
(2)若四邊形ABFC是矩形,求證:△BED∽△DEC;
(3)在(2)的條件下,若等腰梯形的腰AB=5cm,下底BC=8cm,點P是BC邊上的一個動點,以點P為圓心,以1cm長為半徑的圓從點B出發(fā),以每秒2cm的速度向點C移動(不與點C重合),當(dāng)⊙P與AC邊相切時,求⊙P移動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•平南縣二模)如圖,在扇形EAB中,半徑長AB=10,∠EAB=90°;以AB為直徑作半圓O,點D是弧BE上的一個動點,BD與半圓O交于點C,DG⊥AB于點G,DG與AC交于點F,連結(jié)OF.
(1)求證:DC=BC;
(2)設(shè)AG=x,F(xiàn)G2=y,試求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)若點G落在線段OB上,當(dāng)△FOG∽△ABC時,求線段AG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的啦標(biāo)為(-1,0),點B在拋物線上,

1.點A的坐標(biāo)為__________,點B的坐標(biāo)為___________;拋物線的解析式為_________;

2.在拋物線上是否還存在點P(點B除外),使△ACP是以AC為直角邊向直角三角形?若存在,請求出所有點P的坐標(biāo);若不存在,請說明理由

3.若點D是(1)中所求拋物線在第三象限內(nèi)的一個動點,連結(jié)BD、CD。當(dāng)△BCD的面積最大時,求點D的坐標(biāo)。

4.若點P是(1)中所求拋物線上一個動點,以線段AB、BP為鄰邊作平形四邊形ABPQ。當(dāng)點Q落在x軸上時,直接寫出點P的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的啦標(biāo)為(-1,0),點B在拋物線上,
【小題1】點A的坐標(biāo)為__________,點B的坐標(biāo)為___________;拋物線的解析式為_________;
【小題2】在拋物線上是否還存在點P(點B除外),使△ACP是以AC為直角邊向直角三角形?若存在,請求出所有點P的坐標(biāo);若不存在,請說明理由
【小題3】若點D是(1)中所求拋物線在第三象限內(nèi)的一個動點,連結(jié)BD、CD。當(dāng)△BCD的面積最大時,求點D的坐標(biāo)。

【小題4】若點P是(1)中所求拋物線上一個動點,以線段AB、BP為鄰邊作平形四邊形ABPQ。當(dāng)點Q落在x軸上時,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆河南安陽九年級5月中考模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在平面直角坐標(biāo)系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的啦標(biāo)為(-1,0),點B在拋物線上,
【小題1】點A的坐標(biāo)為__________,點B的坐標(biāo)為___________;拋物線的解析式為_________;
【小題2】在拋物線上是否還存在點P(點B除外),使△ACP是以AC為直角邊向直角三角形?若存在,請求出所有點P的坐標(biāo);若不存在,請說明理由
【小題3】若點D是(1)中所求拋物線在第三象限內(nèi)的一個動點,連結(jié)BD、CD。當(dāng)△BCD的面積最大時,求點D的坐標(biāo)。

【小題4】若點P是(1)中所求拋物線上一個動點,以線段AB、BP為鄰邊作平形四邊形ABPQ。當(dāng)點Q落在x軸上時,直接寫出點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案