【題目】用適當(dāng)?shù)姆椒ń庖辉畏匠?/span>
(1)x2+3x+1=0
(2)(x﹣1)(x+2)=2(x+2)

【答案】
(1)解:∵a=1,b=3,c=1,

∴b2﹣4ac=9﹣4×1×1=5>0,

∴x=

∴x1= ,x2=


(2)解:分解因式得:(x+2)(x﹣1﹣2)=0,

可得x+2=0或x﹣3=0,

解得:x1=﹣2,x2=3


【解析】(1)公式法求解可得;(2)因式分解法求解可得.
【考點精析】掌握公式法和因式分解法是解答本題的根本,需要知道要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計算方程判別式.判別式值與零比,有無實根便得知.有實根可套公式,沒有實根要告之;已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,-5),且與正比例函數(shù)y=x的圖象相交于點(2,a),求:

(1)a的值.

(2)k,b的值.

(3)這兩個函數(shù)圖象與x軸所圍成的三角形的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個,保持不動,且的一邊,另一邊DE與直線OB相交于點F.

,,解答下列問題:

如圖,當(dāng)點E、O、D在同一條直線上,即點O與點F重合,則______;

當(dāng)點E、O、D不在同一條直線上,畫出圖形并求的度數(shù);

的前提下,若,,且,請直接寫出的度數(shù)用含、的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,AOB=120°,CEBD,DEAC,若AD=4,則四邊形CODE的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司研發(fā)1000件新產(chǎn)品,需要精加工后才能投放市場.現(xiàn)在甲、乙兩個工廠加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.25倍,公司需付甲工廠加工費用每天100元,乙工廠加工費用每天125元.

(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?

(2)兩個工廠同時合作完成這批產(chǎn)品,共付加工費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學(xué)習(xí)小組做摸球?qū)嶒灒畬⑶驍噭蚝髲闹须S機(jī)摸出一個球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動進(jìn)行中記下的一組數(shù)據(jù)

摸球的次數(shù)

100

150

200

500

800

1000

摸到白球的次數(shù)

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請你估計,當(dāng)n很大時,摸到白球的頻率將會接近 (精確到0.1).

(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是

(3)試估算口袋中黑、白兩種顏色的球有多少只.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC的邊長是2,D,E分別為ABAC的中點,延長BC至點F,使CFBC連接CD和EF.

(1)求證:DE=CF;

(2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文文和彬彬在證明有兩個角相等的三角形是等腰三角形這一命題時,畫出圖形,寫出已知,求證(如圖),她們對各自所作的輔助線描述如下:

文文過點ABC的中垂線AD,垂足為D”

彬彬:ABC的角平分線AD”

數(shù)學(xué)老師看了兩位同學(xué)的輔助線作法后,說:彬彬的作法是正確的,而文文的作法需要訂正.

1)請你簡要說明文文的輔助線作法錯在哪里;

2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是按規(guī)律擺放在墻角的一些小正方體,從上往下分別記為第一層,第二層,第三層,…,第n層.

(1)第三層有________個小正方體;

(2)從第四層至第六層(含第四層和第六層)共有________個小正方體;

(3)第n層有________個小正方體;

(4)若每個小正方體邊長為a分米,共擺放了n層,則要將擺放的小正方體能看到的表面部分涂上防銹漆,則防銹漆的總面積為________平方分米.

查看答案和解析>>

同步練習(xí)冊答案