【題目】如圖,等邊△ABC中,BF是AC邊上中線,點(diǎn)D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長(zhǎng)最小時(shí),∠CFE的大小是( 。
A. 30° B. 45° C. 60° D. 90°
【答案】D
【解析】分析:首先證明點(diǎn)E在射線CE上運(yùn)動(dòng)(∠ACE=30°),
因?yàn)?/span>AF為定值,所以當(dāng)AE+EF最小時(shí),△AEF的周長(zhǎng)最小,
作點(diǎn)A關(guān)于直線CE的對(duì)稱(chēng)點(diǎn)M,連接FM交CE 于E′,此時(shí)AE′+FE′的值最小,
根據(jù)等邊三角形的判定和性質(zhì)即可求出∠CFE的大小.
詳解:∵△ABC,△ADE都是等邊三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴點(diǎn)E在射線CE上運(yùn)動(dòng)(∠ACE=30°),
作點(diǎn)A關(guān)于直線CE的對(duì)稱(chēng)點(diǎn)M,連接FM交CE 于E′,此時(shí)AE′+FE′的值最小,
∵CA=CM,∠ACM=60°,
∴△ACM是等邊三角形,
∵AF=CF,
∴FM⊥AC,
∴∠CFE′=90°,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)勻速運(yùn)動(dòng),速度為每秒1個(gè)單位,過(guò)點(diǎn)作,交對(duì)角線于點(diǎn).點(diǎn)從點(diǎn)出發(fā),沿對(duì)角線向點(diǎn)勻速運(yùn)動(dòng),速度為每秒1個(gè)單位. 、兩點(diǎn)同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為秒().
(1)當(dāng)時(shí),求出的值;
(2)連接,當(dāng)時(shí),求出的值;
(3)試探究:當(dāng)為何值時(shí),是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B、C 為數(shù)軸上三點(diǎn),若點(diǎn) C 到點(diǎn) A 的距離是點(diǎn) C 到點(diǎn) B 的距離的 2倍,則稱(chēng)點(diǎn) C 是(A,B)的奇異點(diǎn),例如圖 1 中,點(diǎn) A 表示的數(shù)為﹣1,點(diǎn)B 表示的數(shù)為 2,表示 1 的點(diǎn) C 到點(diǎn) A 的距離為 2,到點(diǎn) B 的距離為 1,則點(diǎn)C 是(A,B)的奇異點(diǎn),但不是(B,A)的奇異點(diǎn).
(1)在圖 1 中,直接說(shuō)出點(diǎn) D 是(A,B)還是(B,C)的奇異點(diǎn);
(2)如圖 2,若數(shù)軸上 M、N 兩點(diǎn)表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點(diǎn) K 在 M、N 兩點(diǎn)之間,請(qǐng)求出 K 點(diǎn)表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點(diǎn) P 從點(diǎn) B 出發(fā),向左運(yùn)動(dòng).
①若點(diǎn) P 到達(dá)點(diǎn) A 停止,則當(dāng)點(diǎn) P 表示的數(shù)為多少時(shí),P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)?
②若點(diǎn) P 到達(dá)點(diǎn) A 后繼續(xù)向左運(yùn)動(dòng),是否存在使得 P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí) PB 的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式的規(guī)律,解答下列問(wèn)題:
(1)按此規(guī)律,第④個(gè)等式為_________;第個(gè)等式為_______;(用含的代數(shù)式表示,為正整數(shù))
(2)按此規(guī)律,計(jì)算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)M、N是∠ABC與∠ACB三等分線的交點(diǎn).若∠A=60°,則∠BMN的度數(shù)為( )
A. 45° B. 50° C. 60° D. 65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,D是AC上一點(diǎn),AE⊥BD,交BD的延長(zhǎng)線于E,CF⊥BD于F.
(1)求證:CF=BE;
(2)若BD=2AE,求證:∠EAD=∠ABE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,若AB=4,E是AD邊上一點(diǎn)(點(diǎn)E與點(diǎn)A、D不重合),BE的中垂線交AB于點(diǎn)M,交DC于點(diǎn)N,設(shè)AE=x,BM=y,則y與x的大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個(gè)正方形的邊長(zhǎng)與面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D,依此類(lèi)推,則旋轉(zhuǎn)第2016次后,得到的等腰直角三角形的直角頂點(diǎn)P2017的坐標(biāo)為( )
A.(4030,1)
B.(4029,﹣1)
C.(4033,1)
D.(4031,﹣1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com