如圖,在平面直角坐標系中,點B的坐標是(1,0),若點A的坐標為(a,b),將線段BA繞點B順時針旋轉90°得到線段BA′,則點A′的坐標是
(b+1,-a+1)
(b+1,-a+1)
分析:過點A作AC⊥x軸,過點A′作A′D⊥x軸,垂足分別為C、D,根據(jù)旋轉變換的性質可得△ABC與△A′BD全等,再結合圖形根據(jù)全等三角形對應邊相等求出OD、A′D的長度,然后根據(jù)點A′在第四象限寫出即可.
解答:解:過點A作AC⊥x軸,過點A′作A′D⊥x軸,垂足分別為C、D,
顯然Rt△ABC≌Rt△A′BD,
∵點A的坐標為(a,b),點B的坐標是(1,0),
∴OD=OB+BD=OB+AC=1+b,
A′D=BC=OC-OB=a-1,
∵點A′在第四象限,
∴點A′的坐標是(b+1,-a+1).
故答案為:(b+1,-a+1).
點評:本題考查了坐標與圖形的變化,作出全等三角形,利用全等三角形對應邊相等求出點A′到坐標軸的長度是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案