【題目】如圖,AD是△ABC的高,DE∥AC,DF∥AB,則△ABC滿足條件________時(shí),四邊形AEDF是菱形.
【答案】AB=AC或∠B=∠C
【解析】∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形.
所以當(dāng)四邊形AEDF中有一組鄰邊相等時(shí),它就是菱形了.
由此在△ABC中可添加條件:(1)AB=AC或(2)∠B=∠C.
(1)當(dāng)添加條件“AB=AC”時(shí),
∵AD是△ABC的高,AB=AC,
∴點(diǎn)D是BC邊的中點(diǎn),
又∵DE∥AC,DF∥AB,
∴點(diǎn)E、F分別是AB、AC的中點(diǎn),
∴AE=AB,AF=AC,
∴AE=AF,
∴平行四邊形AEDF是菱形.
(2)當(dāng)添加條件“∠B=∠C”時(shí),
則由∠B=∠C可得AB=AC,同(1)的方法可證得:AE=AF,
∴平行四邊形AEDF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形的第一邊長(zhǎng)為3a+2b,第二邊比第一邊長(zhǎng)a-b,第三邊比第二邊短2a,求這個(gè)三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(1,0),B(3,0),且過(guò)點(diǎn)C(0,-3).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)請(qǐng)你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在直線y=-x上,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△PAB的直角頂點(diǎn)P在第四象限,頂點(diǎn)A、B分別落在反比例函數(shù)圖象的兩個(gè)分支上,且PB⊥x軸于點(diǎn)C,PA⊥y軸于點(diǎn)D,AB分別與x軸,y軸相交于點(diǎn)E、F已知B(1,3)
(1)k= ;
(2)試說(shuō)明AE=BF;
(3)當(dāng)四邊形ABCD的面積為時(shí),求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為⊙O外一點(diǎn),PA、PB為⊙O的切線,A、B為切點(diǎn),弦AB與PO交于C,⊙O半徑為1,PO=2,則PA_______,PB=________,PC=_______AC=______,BC=______∠AOB=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M,N分別是正五邊形ABCDE的邊BC,CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y -2與x成正比,且當(dāng)x=1時(shí),y= -6.求y與x之間的函數(shù)關(guān)系式
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com