如圖,在平行四邊形ABCD紙片中,AC⊥AB,AC與BD相交于O,將紙△ABC沿對(duì)角線AC翻轉(zhuǎn)180°,得到△AB′C,

(1)問以A、C、D、B′為頂點(diǎn)的四邊形是什么形狀的四邊形?證明你的結(jié)論;(3分)

(2)若四邊形ABCD的面積為20cm2,求翻轉(zhuǎn)后紙片重疊部分的面積(即△ACE的面積).(3分)

 

【答案】

(1)以A、C、D、B′為頂點(diǎn)的四邊形是矩形,理由見解析;(2)5cm2

【解析】

試題分析:(1)以A、C、D、B′為頂點(diǎn)的四邊形是矩形,根據(jù)平行四邊形的性質(zhì)以及已知條件求證出四邊形ACDB′是平行四邊形,進(jìn)而求出四邊形ACDB′是矩形;

(2)根據(jù)矩形的性質(zhì)以及平行四邊形的性質(zhì)求出△ACD的面積,因?yàn)椤鰽EC和△EDC可以看作是等底等高的三角形,所以SAEC=SACD=5cm2

試題解析:(1)以A、C、D、B′為頂點(diǎn)的四邊形是矩形,理由如下:

∵四邊形ABCD是平行四邊形,∴AB平行且等于CD.

∵△AB′C是由△ABC翻折得到的,AB⊥AC,∴AB=AB′,點(diǎn)A、B、B′在同一條直線上.∴AB′∥CD.

∴四邊形ACDB′是平行四邊形.

∵B′C=BC=AD,∴四邊形ACDB′是矩形.

(2)由四邊形ACDB′是矩形,得AE=DE.

∵SABCD=20cm2,∴SACD=10cm2.

∴SAEC=SACD=5cm2

考點(diǎn):1.翻折變換(折疊問題);2.平行四邊形的性質(zhì);3.矩形的判定.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案