【題目】如圖所示,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長(zhǎng)線交BD于點(diǎn)P.
(1)把△ABC繞點(diǎn)A旋轉(zhuǎn)到圖1,BD,CE的關(guān)系是 (選填“相等”或“不相等”);簡(jiǎn)要說(shuō)明理由;
(2)若AB=3,AD=5,把△ABC繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°時(shí),在圖2中作出旋轉(zhuǎn)后的圖形,PD= ,簡(jiǎn)要說(shuō)明計(jì)算過(guò)程;
(3)在(2)的條件下寫(xiě)出旋轉(zhuǎn)過(guò)程中線段PD的最小值為 ,最大值為 .
【答案】(1)BD,CE的關(guān)系是相等;(2)或;(3)1,7
【解析】分析:(1)依據(jù)△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進(jìn)而得到△ABD≌△ACE,可得出BD=CE;
(2)分兩種情況:依據(jù)∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進(jìn)而得到PD=;依據(jù)∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進(jìn)而得出PB=,PD=BD+PB=;
(3)以A為圓心,AC長(zhǎng)為半徑畫(huà)圓,當(dāng)CE在⊙A下方與⊙A相切時(shí),PD的值最;當(dāng)CE在在⊙A右上方與⊙A相切時(shí),PD的值最大.在Rt△PED中,PD=DEsin∠PED,因此銳角∠PED的大小直接決定了PD的大。謨煞N情況進(jìn)行討論,即可得到旋轉(zhuǎn)過(guò)程中線段PD的最小值以及最大值.
詳解:(1)BD,CE的關(guān)系是相等.
理由:∵△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,∠BAD=∠CAE,DA=EA,
∴△ABD≌△ACE,
∴BD=CE;
故答案為:相等.
(2)作出旋轉(zhuǎn)后的圖形,若點(diǎn)C在AD上,如圖2所示:
∵∠EAC=90°,
∴CE=,
∵∠PDA=∠AEC,∠PCD=∠ACE,
∴△PCD∽△ACE,
∴,
∴PD=;
若點(diǎn)B在AE上,如圖2所示:
∵∠BAD=90°,
∴Rt△ABD中,BD=,BE=AE﹣AB=2,
∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
∴△BAD∽△BPE,
∴,即,
解得PB=,
∴PD=BD+PB=+=,
故答案為:或;
(3)如圖3所示,以A為圓心,AC長(zhǎng)為半徑畫(huà)圓,當(dāng)CE在⊙A下方與⊙A相切時(shí),PD的值最;當(dāng)CE在在⊙A右上方與⊙A相切時(shí),PD的值最大.
如圖3所示,分兩種情況討論:
在Rt△PED中,PD=DEsin∠PED,因此銳角∠PED的大小直接決定了PD的大小.
①當(dāng)小三角形旋轉(zhuǎn)到圖中△ACB的位置時(shí),
在Rt△ACE中,CE==4,
在Rt△DAE中,DE=,
∵四邊形ACPB是正方形,
∴PC=AB=3,
∴PE=3+4=7,
在Rt△PDE中,PD=,
即旋轉(zhuǎn)過(guò)程中線段PD的最小值為1;
②當(dāng)小三角形旋轉(zhuǎn)到圖中△AB'C'時(shí),可得DP'為最大值,
此時(shí),DP'=4+3=7,
即旋轉(zhuǎn)過(guò)程中線段PD的最大值為7.
故答案為:1,7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是小華同學(xué)一個(gè)學(xué)期數(shù)學(xué)成績(jī)的記錄.根據(jù)表格提供的信息,回答下列的問(wèn)題:
考試類別 | 平時(shí)考試 | 期中考試 | 期末考試 | |||
第一單元 | 第二單元 | 第三單元 | 第四單元 | |||
成績(jī)(分) | 85 | 78 | 90 | 91 | 90 | 94 |
(1)小明6次成績(jī)的眾數(shù)是 ,中位數(shù)是 ;
(2)求該同學(xué)這個(gè)同學(xué)這一學(xué)期平時(shí)成績(jī)的平均數(shù);
(3)總評(píng)成績(jī)權(quán)重規(guī)定如下:平時(shí)成績(jī)占20%,期中成績(jī)占30%,期末成績(jī)占50%,請(qǐng)計(jì)算出小華同學(xué)這一個(gè)學(xué)期的總評(píng)成績(jī)是多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號(hào)”高鐵A與“復(fù)興號(hào)”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時(shí)間比B車的行駛時(shí)間多40%,兩車的行駛時(shí)間分別為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)已知△ABC是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,點(diǎn)D在線段BC上移動(dòng)時(shí),直接寫(xiě)出∠BAD和∠CAE的大小關(guān)系;
(2)如圖②,點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),猜想∠DCE的大小是否發(fā)生變化.若不變請(qǐng)求出其大小;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問(wèn)題:
(1)寫(xiě)出電流I與電阻R之間的函數(shù)解析式.
(2)如果一個(gè)用電器的電阻為5Ω,其允許通過(guò)的最大電流是1A,那么這個(gè)用電器接在這個(gè)閉合電路中,會(huì)不會(huì)燒毀?說(shuō)明理由.
(3)若允許的電流不超過(guò)4A時(shí),那么電阻R的取值應(yīng)該控制在什么范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)A(2,0)的兩條直線,分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.
(1)求點(diǎn)B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以半徑為1的圓的內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,DM垂直平分AC,交BC于點(diǎn)D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王沿街勻速行走,發(fā)現(xiàn)每隔6分鐘從背后駛過(guò)一輛18路公交車,每隔3分鐘從迎面駛來(lái)一輛18路公交車.假設(shè)每輛18路公交車行駛速度相同,而且18路公交車總站每隔固定時(shí)間發(fā)一輛車,那么發(fā)車間隔的時(shí)間是( 。
A. 3分鐘 B. 4分鐘 C. 5分鐘 D. 6分鐘
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com