【題目】如圖,在菱形ABCD中,P是對(duì)角線AC上任一點(diǎn)(不與A,C重合),連接BP,DP,過(guò)P作PE∥CD交AD于E,過(guò)P作PF∥AD交CD于F,連接EF.
(1)求證:△ABP≌△ADP;
(2)若BP=EF,求證:四邊形EPFD是矩形.

【答案】
(1)證明:∵點(diǎn)P是菱形ABCD對(duì)角線AC上的一點(diǎn),

∴∠DAP=∠PAB,AD=AB,

∵在△APB和△APD中, ,

∴△ABP≌△ADP(SAS)


(2)證明:∵PE∥CD,PF∥AD,

∴四邊形EPFD是平行四邊形,

由(1)得:△ABP≌△ADP,

∴BP=DP,

又∵BP=EF,

∴DP=EF,

∴四邊形EPFD是矩形


【解析】(1)根據(jù)菱形的性質(zhì)得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△ABP≌△ADP即可;(2)先證明四邊形EPFD是平行四邊形,再由全等三角形的性質(zhì)得出BP=DP,由已知證出DP=EF,即可得出結(jié)論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用菱形的性質(zhì)和矩形的判定方法,掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半;有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對(duì)角線相等的平行四邊形是矩形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4)

(1)請(qǐng)畫(huà)出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1 , 直接寫(xiě)出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫(huà)出△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°的圖形△A2B2C2 , 直接寫(xiě)出點(diǎn)A2的坐標(biāo);
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)系中,兩個(gè)量之間為反比例函數(shù)關(guān)系的是( 。
A.正方形的面積S與邊長(zhǎng)a的關(guān)系
B.正方形的周長(zhǎng)l與邊長(zhǎng)a的關(guān)系
C.矩形的長(zhǎng)為a , 寬為20,其面積Sa的關(guān)系
D.矩形的面積為40,長(zhǎng)a與寬b之間的關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 軸于 兩點(diǎn),交 軸于點(diǎn) ,

(Ⅰ)求拋物線的解析式;
(Ⅱ)若 是拋物線的第一象限圖象上一點(diǎn),設(shè)點(diǎn) 的橫坐標(biāo)為m,
點(diǎn) 在線段 上,CD=m,當(dāng) 是以 為底邊的等腰三角形時(shí),求點(diǎn) 的坐標(biāo);
(Ⅲ)在(Ⅱ)的條件下,是否存在拋物線上一點(diǎn) ,使 ,若存在,求出點(diǎn) 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EB為半圓O的直徑,點(diǎn)A在EB的延長(zhǎng)線上,AD切半圓O于點(diǎn)D,BC⊥AD于點(diǎn)C,AB=2,半圓O的半徑為2,則BC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,P是對(duì)角線AC上任一點(diǎn)(不與A,C重合),連接BP,DP,過(guò)P作PE∥CD交AD于E,過(guò)P作PF∥AD交CD于F,連接EF.
(1)求證:△ABP≌△ADP;
(2)若BP=EF,求證:四邊形EPFD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

(1)把△ABC向上平移3個(gè)單位后得到△A1B1C1 , 請(qǐng)畫(huà)出△A1B1C1并寫(xiě)出點(diǎn)B1的坐標(biāo);
(2)已知點(diǎn)A與點(diǎn)A2(2,1)關(guān)于直線l成軸對(duì)稱,請(qǐng)畫(huà)出直線l及△ABC關(guān)于直線l對(duì)稱的△A2B2C2 , 并直接寫(xiě)出直線l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從長(zhǎng)為3,5,7,10的四條線段中任意選取三條作為邊,能構(gòu)成三角形的概率是(
A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),已知點(diǎn)A、點(diǎn)B的坐標(biāo)分別為A(﹣1,0)、B(3,0).

(1)求拋物線的解析式;
(2)在直線BC上方的拋物線上找一點(diǎn)P,使△PBC的面積最大,求P點(diǎn)的坐標(biāo);
(3)如圖2,連接BD、CD,拋物線的對(duì)稱軸與x軸交于點(diǎn)E,過(guò)拋物線上一點(diǎn)M作MN⊥CD,交直線CD于點(diǎn)N,求當(dāng)∠CMN=∠BDE時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案