【題目】目前“微信”、“支付寶”、“共享單車“和“網(wǎng)購”給我們的生活帶來了很多便利,九年級數(shù)學(xué)興趣小組在校內(nèi)對“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機(jī)調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中信息求出m= ,n= ;
(2)請你幫助他們將這兩個統(tǒng)計圖補(bǔ)全;
(3)已知A、B兩位同學(xué)都最認(rèn)可“微信”,C同學(xué)最認(rèn)可“支付寶”,D同學(xué)最認(rèn)可“網(wǎng)購”,從這四名同學(xué)中抽取兩名同學(xué),請你通過樹狀圖或表格,求出這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率.
【答案】(1)100、35;(2)見解析;(3)
【解析】
(1)由共享單車人數(shù)及其百分比求得總?cè)藬?shù)m,用支付寶人數(shù)除以總?cè)藬?shù)可得其百分比n的值;
(2)總?cè)藬?shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總?cè)藬?shù)求得其百分比即可補(bǔ)全兩個圖形;
(3)根據(jù)題意畫出樹狀圖得出所有等可能結(jié)果,從中找到這兩位同學(xué)最認(rèn)可的新生事物不一樣的結(jié)果數(shù),再根據(jù)概率公式計算可得.
解:(1)∵被調(diào)查的總?cè)藬?shù)m=10÷10%=100人,
∴支付寶的人數(shù)所占百分比n%=×100%=35%,即n=35,
故答案為:100,35;
(2)網(wǎng)購人數(shù)為100×15%=15人,微信對應(yīng)的百分比為×100%=40%,
補(bǔ)全圖形如下:
(3)根據(jù)題意畫樹狀圖如下:
共有12種情況,這兩位同學(xué)最認(rèn)可的新生事物不一樣的有10種,所以這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率為=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AB.C內(nèi)接于⊙0,點(diǎn)D在半徑OB的延長線上,∠BCD=∠A=30°.
(1)判斷直線CD與⊙0的位置關(guān)系,并說明理由
(2)若⊙0的半徑為1,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)完反比例函數(shù)的圖象及性質(zhì)后,老師給冋學(xué)們留了這樣一道作業(yè)題:“已知點(diǎn)(﹣1,m)和點(diǎn)(2,n)都在反比例函數(shù)y=(k<0)的圖象上,試比較m和n的大。俊币韵率潜虮蛲瑢W(xué)的解題過程:
解:∵在反比例函數(shù)y=中,k<0 ①
∴反比例函數(shù)y=,y隨x的增大而增大 ②
∵ ③
∴ ④
(1)彬彬的解答過程在第 步開始出錯,出錯的原因是 .請你幫助彬彬?qū)懗稣_的解答過程.
(2)若點(diǎn)(﹣6,p)、點(diǎn)(1,q)和點(diǎn)(3,z)也在反比例函數(shù)y=(k<0)的圖象上,直接比較p、q、z的大小 (結(jié)果用“<”連結(jié))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂場一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點(diǎn)E在水平地面上BD上,在C點(diǎn)測得點(diǎn)A的仰角為30°,斜面EC的坡度為1:,測得B、E間距離為10米,立柱AB高30米,求立柱CD的高(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知點(diǎn)E,F,G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點(diǎn),求證四邊形FFG是平行四邊形.根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:
(1)根據(jù)上述思路,請你寫出完整的證明過程;
(2)如圖,已知,分別以AB、AC為邊,在BC同側(cè)作等邊三角形ABD和等邊三角形ACE,連接CD,BF.可通過證明△________≌△________,得到;
(3)如圖③,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足,,,點(diǎn)E,F,G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想四邊形EFGH的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是邊上任意一點(diǎn)(點(diǎn)與點(diǎn)、不重合),以為一直角邊在的外部作,,連接,.
(1)在圖中,若,,現(xiàn)將圖中的繞著點(diǎn)順時針旋轉(zhuǎn)銳角,得到圖,那么線段,之間有怎樣的關(guān)系,寫出結(jié)論,并說明理由;
(2)在圖中,若,,,,現(xiàn)將圖中的繞著點(diǎn)順時針旋轉(zhuǎn)銳角,得到圖,連接、.
①求證:;
②計算:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)M在拋物線上,且S△AOM=2S△BOC,求點(diǎn)M的坐標(biāo);
(3)如圖2,設(shè)點(diǎn)N是線段AC上的一動點(diǎn),作DN⊥x軸,交拋物線于點(diǎn)D,求線段DN長度的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com