【題目】x,y為實數(shù),且|x+2|+y22y+1=0,則(x+y3的值為____

【答案】1

【解析】

直接利用絕對值以及偶次方的性質化簡得出x,y的值,進而得出答案.

解:∵|x+2|+y22y+1=0,

x+2=0,(y12=0,

解得:x=2,y=1

∴(x+y3=(﹣2+13=1

故答案為:﹣1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°,B=E=30°.

(1)操作發(fā)現(xiàn)

如圖2,固定ABC,使DEC繞點C旋轉,當點D恰好落在AB邊上時,填空:

①線段DEAC位置關系是_________;

②設BDC的面積為S1,AEC的面積為S2,則S1S2的數(shù)量關系是____________.

(2)猜想論證

DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1S2的數(shù)量關系仍然成立,并嘗試分別作出了BDCAECBC、CE邊上的高,請你證明小明的猜想.

(3)拓展探究

已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//ABBC于點E(如圖4).若在射線BA上存在點F,使,請直接寫出相應的BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,把點A(3,5)向下平移3個單位長度,再向左平移2個單位長度后,得對應點A1的坐標是(

A.(1,2)B.(21)C.(1,2)D.(1,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段AB∥CD,AD與BC相交于點K,E是線段AD上一動點.
(1)若BK= KC,求 的值;
(2)連接BE,若BE平分∠ABC,則當AE= AD時,猜想線段AB、BC、CD三者之間有怎樣的等量關系?請寫出你的結論并予以證明.再探究:當AE= AD(n>2),而其余條件不變時,線段AB、BC、CD三者之間又有怎樣的等量關系?請直接寫出你的結論,不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2 , 且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學魔術:如圖所示,數(shù)軸上的點A、B、C、D分別表示,請回答下列問題:

(1)在數(shù)軸上描出A、B、C、D四個點;

(2)B、C兩點間的距離是多少?A、D兩點間的距離是多少?

(3)現(xiàn)在把數(shù)軸的原點取在點B處,其余都不變,那么點A、B、C、D、分別表示什么數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點,連接AE并延長交DC的延長線于點F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ABCD.

(1)如圖1,直接寫出∠BME、E、END的數(shù)量關系為   ;

(2)如圖2,BME與∠CNE的角平分線所在的直線相交于點P,試探究∠P與∠E之間的數(shù)量關系,并證明你的結論;

(3)如圖3,ABM=MBE,CDN=NDE,直線MB、ND交于點F,則 =   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(2a﹣12,1﹣a)位于第三象限,點Q(x,y)位于第二象限且是由點P向上平移一定單位長度得到的.

(1)若點P的縱坐標為﹣3,試求出a的值;

(2)在(1)題的條件下,試求出符合條件的一個點Q的坐標;

(3)若點P的橫、縱坐標都是整數(shù),試求出a的值以及線段PQ長度的取值范圍.

查看答案和解析>>

同步練習冊答案