如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延長線于M,連接CD.下列結(jié)論:①BC+CE=AB,②BD=,③BD=CD,④∠ADC=45°,⑤AC+AB=2AM;其中不正確的結(jié)論有( )
A.0個 B.1個 C.2個 D.3個
A
【解析】
試題分析:
①過點E作EF⊥AB于點F。已知Rt△ABC中,AC=BC∴∠3=45°。
∵在△ACE和△AFE中,∠ACB=90°∴∠EFA=∠ACB=90°,且AE平分∠BAC,所以∠1=∠2.且AE=AE。所以△ACE≌△AFE!郈E=EF,AC=AF。在Rt△EFB中,∠3=45°,所以EF=FB。所以BC+CE="=AF+FB=AB" 。
②作 AM與BD延長線相交于G,在Rt△ADG和Rt△BCG中,∠G= ∠G,∠GCB= ∠GDA=90°。
∴∠1= ∠6,已知: AC=BC
∴ Rt△GBC≡Rt△EAC,∴BG="AE" 。又∵DG=DB(可通過角邊角證明Rt△ADG≌Rt△ADB)
∴ BD=
③BD=CD:證明:∵由②知DG=DB∴在Rt△BGC中,CD為斜邊中線!郈D=BG=BD
④∵BD=CD所以∠5=∠6=∠1,∵BC∥MD,∴∠MDC=∠5,∠GDM=∠6,∴∠GDC=45°。
∵∠GDA=90°,∴∠ADC=45°
⑤由上可得 AB=AG=AC+CG
∵ DM⊥AC 即 DM//BC, 又 DG=DB
∴ MC=MG=CG
∴ AB-BC=CG=2MC
考點:全等三角形,平行線的性質(zhì)等。
點評:本題難度較高。學(xué)生需要通過輔助線補充好全等直角三角形等條件來證明。一般選擇題中出現(xiàn)這種證明過程較復(fù)雜的題目,可以直接用排除法排除。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com