【題目】圖①是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀把它均分成四個(gè)小長方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于多少?

(2)請(qǐng)用兩種不同的方法求圖②中陰影部分的面積.

(3)觀察圖②你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?

代數(shù)式:(mn)2,(mn)2,mn.

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:

已知ab=7,ab=5,求(ab)2的值.(寫出過程)

【答案】解:(1)m-n;(2)詳見解析;(3)(m+n2=(m-n2+4mn;(4)29.

【解析】

(1)觀察可得陰影部分的正方形邊長是m-n;

(2)方法1:邊長為m+n的大正方形的面積減去4個(gè)長為m,寬為n的小長方形面積;

方法2:邊長為m+n的大正方形的面積減去長為2m,寬為2n的長方形面積;

(3)由(2)可得結(jié)論(m+n)2=(m-n)2+4mn;

(4)由(a-b)2=(a+b)2-4ab求解.

(1)陰影部分的正方形邊長是m-n

(2)陰影部分的面積就等于邊長為m-n的小正方形的面積,

方法1:邊長為m+n的大正方形的面積減去長為2m,寬為2n的長方形面積,

即(m-n2=(m+n2-4mn;

方法2:邊長為m+n的大正方形的面積減去長為2m,寬為2n的長方形面積,

即(m-n2=(m+n2-2m2n=(m+n2-4mn;

(3)(m+n2=(m-n2+4mn

(4)(a-b2=(a+b2-4ab=49-4×5=29.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式:;②;③;④;⑤;⑥;⑦;⑧中方程有________,一元一次方程有________(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)9x-5=2x+23;

(2)2x+3(2x-1)=16-(x+1);

(3);

(4) [ (x-)-8]=x+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F,且AE=CF.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與y軸交于A點(diǎn),與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,且C點(diǎn)的坐標(biāo)為(1,0).
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)D(a,1)是反比例函數(shù)y= (x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PB+PD最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知正方形的邊長為4,甲、乙兩動(dòng)點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時(shí)沿正方形的邊開始移動(dòng),甲點(diǎn)依順時(shí)針方向環(huán)行,乙點(diǎn)依逆時(shí)針方向環(huán)行,若乙的速度是甲的速度的3,則它們第2018次相遇在邊)上.

A. AB B. BC C. CD D. DA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在數(shù)軸上有一小木棒AB,若平移木棒,使B落在A處,則A′所表示的數(shù)為 -1,若將A落在B處時(shí),則B′所表示的數(shù)14,它的兩個(gè)端點(diǎn)A、B所表示的數(shù)分別是 、 .

(2)老師給東東出了一道關(guān)于年齡的數(shù)學(xué)題:我像你那么小時(shí),你才兩歲;你像我那么大時(shí),我已經(jīng)44歲了,你猜我有多少歲?親愛的同學(xué),你能不能利用上一題的方法幫助小東求出老師的年齡呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b互為相反數(shù),c、d互為倒數(shù),|x|=2018,求2a+2b++cdx的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)若x,y都是實(shí)數(shù),且,求5x+13y+6的立方根;

(2)已知ABC的三邊長分別為a,b,c,且滿足,求c的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案