【題目】如圖, 拋物線與軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
【答案】D
【解析】
利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進(jìn)行判斷;利用2≤c≤3和c=-3a可對②進(jìn)行判斷;利用二次函數(shù)的性質(zhì)可對③進(jìn)行判斷;根據(jù)拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn)可對④進(jìn)行判斷.
∵拋物線開口向下,
∴a<0,
而拋物線的對稱軸為直線x=-=1,即b=-2a,
∴3a+b=3a-2a=a<0,所以①正確;
∵2≤c≤3,
而c=-3a,
∴2≤-3a≤3,
∴-1≤a≤-,所以②正確;
∵拋物線的頂點(diǎn)坐標(biāo)(1,n),
∴x=1時(shí),二次函數(shù)值有最大值n,
∴a+b+c≥am2+bm+c,
即a+b≥am2+bm,所以③正確;
∵拋物線的頂點(diǎn)坐標(biāo)(1,n),
∴拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),
∴關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,所以④正確.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)從點(diǎn)出發(fā),沿著以每秒的速度向點(diǎn)運(yùn)動;同時(shí)點(diǎn)從點(diǎn)出發(fā),沿以每秒的速度向點(diǎn)運(yùn)動,設(shè)運(yùn)動時(shí)間為秒.
(1)當(dāng)為何值時(shí),;
(2)是否存在某一時(shí)刻,使?若存在,求出此時(shí)的長;若不存在,請說理由;
(3)當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩臺智能機(jī)器人從同一地點(diǎn)出發(fā),沿著筆直的路線行走了450cm.甲比乙先出發(fā),乙出發(fā)一段時(shí)間后速度提高為原來的2倍.兩機(jī)器人行走的路程y(cm)與時(shí)間x(s)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:
(1)乙比甲晚出發(fā)_________秒,乙提速前的速度是每秒_________cm, =_________;
(2)已知甲勻速走完了全程,請補(bǔ)全甲的圖象;
(3)當(dāng)x為何值時(shí),乙追上了甲?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x函數(shù)y=(2﹣k)x2﹣2x+k
(1)若此函數(shù)的圖象與坐標(biāo)軸只有2個(gè)交點(diǎn),求k的值.
(2)求證:關(guān)于x的一元二次方程(2﹣k)x2﹣2x+k=0必有一個(gè)根是1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價(jià)促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“了解”部分所對應(yīng)扇形的圓心角為 °;
(2)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為 人;
(3)若從對校園安全知識達(dá)到“了解”程度的3個(gè)女生A、B、C和2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MON=30°,OA=4,在OM、ON上分別找一點(diǎn)B、C,使AB+BC最小,則最小值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,過,,三點(diǎn)作圓,點(diǎn)在第一象限部分的圓上運(yùn)動,連結(jié),過點(diǎn)作的垂線交的延長線于點(diǎn),下列說法:①;②;③的最大值為10.其中正確的是( )
A. ①②B. ②③C. ①③D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣出180件;如果每件商品的售價(jià)每上漲1元,則每周就會少賣出5件,但每件售價(jià)不能高于50元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤恰好是2145元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com