【題目】概念認(rèn)識(shí)
平面內(nèi),M為圖形T上任意一點(diǎn),N為⊙O上任意一點(diǎn),將M、N兩點(diǎn)間距離的最小值稱為圖形T到⊙O的“最近距離”,記作d(T﹣⊙O).例如圖①,在直線l上有A、B、O三點(diǎn),以AB為一邊作等邊△ABC,以點(diǎn)O為圓心作圓,與l交于D、E兩點(diǎn),若將△ABC記為圖形T,則B、D兩點(diǎn)間的距離稱為圖形T到⊙O的“最近距離”.
數(shù)學(xué)理解
(1)在直線l上有A、B兩點(diǎn),以點(diǎn)A為圓心,3為半徑作⊙A,將點(diǎn)B記為圖形T,若d(T﹣⊙A)=1,則AB= .
(2)如圖②,在平面直角坐標(biāo)系中,以O(0,0)為圓心,半徑為2作圓.
①將點(diǎn)C(4,3)記為圖形T,則d(T﹣⊙O)= .
②將一次函數(shù)y=kx+2的圖記為圖形T,若d(T﹣⊙O)>0,求k的取值范圍.
推廣運(yùn)用
(3)在平面直角坐標(biāo)系中,P的坐標(biāo)為(t,0),⊙P的半徑為2,D、E兩點(diǎn)的坐標(biāo)分別為(﹣8,8)、(﹣8,﹣8),將∠DOE記為圖形T,若d(T﹣⊙P)=1,則t= .
【答案】(1)2或4;(2)①3;②﹣1<k<1且k≠0;(3)﹣3或3.
【解析】
(1)根據(jù)d(T﹣⊙A)=1可得CB=CB′=1,由AC=3即可得出答案;
(2)①連接OC并求出OC的長(zhǎng)度即可得出答案;
②設(shè)直線y=kx+與y軸的交點(diǎn)為D,與⊙O相切于E,K,連接OK,OE,求出DK、DE的長(zhǎng)度證明四邊形DEOK是正方形,得到∠ODE=∠ODK=45°,然后根據(jù)d(T﹣⊙O)>0即可得出答案;
(3)分兩種情形:①如圖31中,當(dāng)點(diǎn)P在∠DOE內(nèi)部時(shí),作PM⊥OD于M,交⊙P于K.②如圖32中,當(dāng)點(diǎn)P在∠DOE的外側(cè)時(shí),分別求解即可.
解:(1)如圖1中,
∵d(T﹣⊙A)=1,
∴CB=CB′=1,
∵AC=3,
∴AB′=2,AB=4.
故答案為2或4.
(2)①如圖2中,連接OC交⊙O于E.
∵C(4,3),
∴OC==5,
∵OE=2,
∴EC=3,
∴d(T﹣⊙O)=3.
故答案為3.
②如圖,設(shè)直線y=kx+與y軸的交點(diǎn)為D,與⊙O相切于E,K.連接OK,OE.
∵OE⊥DE,OK⊥DK,OD=,OE=OK=2,
∴DK==2,DE==2,
∴DE=OE=DK=OK,
∴四邊形DEOK是菱形,
∵∠DKO=∠DEO=90°,
∴四邊形DEOK是正方形,
∴∠ODE=∠ODK=45°,
∴直線DE的解析式為y=﹣x+,直線DK的解析式為y=x+,
∵d(T﹣⊙O)0,
∴觀察圖象可知滿足條件的k的值為﹣1<k<1且k≠0.
(3)如圖3﹣1中,當(dāng)點(diǎn)P在∠DOE內(nèi)部時(shí),作PM⊥OD于M,交⊙P于K.
∵D(﹣8,8),
∴∠DOP=45°,
∵d(T﹣⊙P)=1,
∴PM=OM=3,OP=,
∴t=﹣.
如圖3﹣2中,當(dāng)點(diǎn)P在∠DOE的外側(cè)時(shí),由題意可知OM=1,OP=1+2=3,t=3.
綜上所述,滿足條件的t的值為﹣或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=-2x+3與拋物線y=x2相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求點(diǎn)A和B的坐標(biāo);
(2)連結(jié)OA,OB,求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.
(1)①求的值;②求∠ACD的度數(shù).
(2)拓展探究
如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請(qǐng)直接寫出CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長(zhǎng);
(2)當(dāng)洪水泛濫到跨度只有30米時(shí),要采取緊急措施,若拱頂離水面只有4米,即PE=4米時(shí),是否要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面有4個(gè)命題:①過(guò)任意三點(diǎn)可以畫一個(gè)圓;②同圓的內(nèi)接正方形和內(nèi)接正三角形的邊長(zhǎng)比是:;③三角形的內(nèi)心到三角形的三邊距離相等;④長(zhǎng)度相等的弧是等弧.其中正確的有_____(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值,若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)求PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc>0;②當(dāng)x>2時(shí),y>0;③3a+c>0;④3a+b>0.其中正確的結(jié)論有( )
A. ①② B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料,回答問(wèn)題:
解方程,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:設(shè),那么,于是原方程可變?yōu)?/span>①,解得,.
當(dāng)時(shí),,∴
當(dāng)時(shí),,∴
∴原方程有四個(gè)根:,,,.
(1)在由原方程得到方程①的過(guò)程中,利用________法達(dá)到________的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想.
(2)解方程.
(3)已知非零實(shí)數(shù)a,b滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c與二次函數(shù)y=(a+3)x2+(b-15)x+c+18的圖象與x軸的交點(diǎn)分別是A,B,C.
(1)判斷圖中經(jīng)過(guò)點(diǎn)B,D,C的圖象是哪一個(gè)二次函數(shù)的圖象?試說(shuō)明理由.
(2)設(shè)兩個(gè)函數(shù)的圖象都經(jīng)過(guò)點(diǎn)B、D,求點(diǎn)B,D的橫坐標(biāo).
(3)若點(diǎn)D是過(guò)點(diǎn)B、D、C的函數(shù)圖象的頂點(diǎn),縱坐標(biāo)為-2,求這兩個(gè)函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com