【題目】拉桿箱是人們出行的常用品,采用拉桿箱可以讓人們出行更輕松.如圖,一直某種拉桿箱箱體長AB=65cm,拉桿最大伸長距離BC=35cm,在箱體底端裝有一圓形滾輪,當拉桿拉到最長時,滾輪的圓心在圖中的A處,點A到地面的距離AD=3cm,當拉桿全部縮進箱體時,滾輪圓心水平向右平移55cm到A′處,求拉桿把手C離地面的距離(假設(shè)C點的位置保持不變).
【答案】拉桿把手C離地面的距離為63cm
【解析】
過C作CE⊥DN于E,延長AA'交CE于F,根據(jù)勾股定理即可得到方程652-x2=1002-(55+x)2,求得A'F的長,即可利用勾股定理得到CF的長,進而得出CE的長.
如圖所示,過C作CE⊥DN于E,延長AA'交CE于F,則∠AFC=90°,
設(shè)A'F=x,則AF=55+x,
由題可得,AC=65+35=100,A'C=65,
∵Rt△A'CF中,CF2=652﹣x2,
Rt△ACF中,CF2=1002﹣(55+x)2,
∴652﹣x2=1002﹣(55+x)2,
解得x=25,
∴A'F=25,
∴CF==60(cm),
又∵EF=AD=3(cm),
∴CE=60+3=63(cm),
∴拉桿把手C離地面的距離為63cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,、為對角線,點、、、分別為、、、邊的中點,下列說法:
①當時,、、、四點共圓.②當時,、、、四點共圓.③當且時,、、、四點共圓.其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1個單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標系△ABC是格點三角形(頂點在網(wǎng)格線的交點上)
(1)先作△ABC關(guān)于原點O成中心對稱的△A1B1C1,再把△A1B1C1向上平移4個單位長度得到△A2B2C2;
(2)△A2B2C2與△ABC是否關(guān)于某點成中心對稱?若是,直接寫出對稱中心的坐標;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AE⊥BC于點E,∠B=22.5°,AB的垂直平分線DN交BC于點D,交AB于點N,DF⊥AC于點F,交AE于點M.求證:
(1)AE=DE;
(2)EM=EC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉(zhuǎn)得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.
(1)求拋物線解析式;
(2)若線段DE是CD繞點D順時針旋轉(zhuǎn)90°得到,求線段DF的長;
(3)若線段DE是CD繞點D旋轉(zhuǎn)90°得到,且點E恰好在拋物線上,請求出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,將△ABC沿∠B的平分線折疊,使點A落在BC邊上的點D處,設(shè)折痕交AC邊于點E,繼續(xù)沿直線DE折疊,若折疊后,BE與線段DC相交,且交點不與點C重合,則∠BAC的度數(shù)應(yīng)滿足的條件是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖(1),若分別以△ABC的三邊AC、BC、AB為邊向三角形外側(cè)作正方形ACDE、BCFG和ABMN,則稱這三個正方形為△ABC的外展三葉正方形,其中任意兩個正方形為△ABC的外展
雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2.
①如圖(2),當∠ACB=90°時,求證:S1=S2;
②如圖(3),當∠ACB≠90°時,S1與S2是否仍然相等,請說明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF、△AEN、△BGM的面積和為S,請利用圖(1)探究:當∠ACB的度數(shù)發(fā)生變化時,S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,、、三邊的長分別為、、,求這個三角形的面積.小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將的面積直接填寫在橫線上.__________________
(2)我們把上述求面積的方法叫做構(gòu)圖法.若三邊的長分別為、、(),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為)畫出相應(yīng)的,并求出它的面積.
(3) 若△ABC三邊的長分別為、、 (m>0,n>0,且m≠n),請利用圖③的長方形網(wǎng)格試運用構(gòu)圖法求出這三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠設(shè)計了一款工藝品,每件成本元,為了合理定價,現(xiàn)投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是元時,每天的銷售量是件,若銷售單價每降低元,每天就可多售出件,但要求銷售單價不得低于元.如果降價后銷售這款工藝品每天能盈利元,那么此時銷售單價為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com