【題目】 小剛是一名學(xué)校足球隊的隊員,根據(jù)以往比賽數(shù)據(jù)統(tǒng)計,小剛每場比賽進(jìn)球率為15%,他明天將參加一場學(xué)校足球隊比賽,下面說法正確的是( 。

A.小剛明天肯定進(jìn)球B.小剛明天每射球15次必進(jìn)球1

C.小剛明天有可能進(jìn)球D.小剛明天一定不能進(jìn)球

【答案】C

【解析】

直接利用概率的意義分析得出答案.

解:根據(jù)以往比賽數(shù)據(jù)統(tǒng)計,小剛每場比賽進(jìn)球率為15%,他明天將參加一場比賽小剛明天有可能進(jìn)球.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是( )

A. 同旁內(nèi)角相等,兩直線平行

B. 對角線互相平分的四邊形是平行四邊形

C. 相等的兩個角是對頂角

D. 圓內(nèi)接四邊形對角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列說法: ① 沒有立方根;
②實數(shù)與數(shù)軸上的點(diǎn)一一對應(yīng);
③近似數(shù)3.20萬,該數(shù)精確到千位;
是分?jǐn)?shù);
⑤近似數(shù)5.60所表示的準(zhǔn)確數(shù)x的范圍是:5.55≤x<5.65
其中正確的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(0,1.5),我們把以點(diǎn)C為圓心,半徑為1.5的圓稱為點(diǎn)C的朋友圈,圓周上的每一個點(diǎn)叫做點(diǎn)C的一個好友.

1)寫出點(diǎn)C的兩個好友坐標(biāo);

2)直線l的解析式是y=x﹣4,與x軸、y軸分別交于A、B兩點(diǎn),圓心C從點(diǎn)(01.5)開始以每秒0.5個單位的速度沿著y軸向下運(yùn)動,當(dāng)點(diǎn)C的朋友圈有好友落在直線上時,直線將受其影響,求在點(diǎn)C向下運(yùn)動的過程中,直線受其影響的時間;

3)拋物線y=ax2+bx+c過原點(diǎn)O和點(diǎn)A,且頂點(diǎn)D恰好為點(diǎn)C的好友,連接ODE⊙C上一點(diǎn),當(dāng)△DOE面積最大時,求點(diǎn)E的坐標(biāo),此時△DOE的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點(diǎn)P,Q是BC邊上的兩個動點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,連接AM,PM.

①依題意將圖2補(bǔ)全;

②小茹通過觀察、實驗提出猜想:在點(diǎn)P,Q運(yùn)動的過程中,始終有PA=PM,小茹把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點(diǎn)B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年2月上旬福州地區(qū)空氣質(zhì)量指數(shù)(AQI)如下表所示,空氣質(zhì)量指數(shù)不大于100表示空氣質(zhì)量優(yōu)良,如果小王該月上旬來福州度假三天那么他在福州度假期間空氣質(zhì)量都是優(yōu)良的概率是 .

2016年2月上旬福州地區(qū)空氣質(zhì)量指數(shù)(AQI)

日期

1

2

3

4

5

6

7

8

9

10

ug/m3

26

34

43

41

34

48

78

1 15

59

45

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任何一個正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q).如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q(p≤q)是n的最佳分解,并規(guī)定Fn= .例如:18可以分解成1×18,2×9,3×6,這時就有F18= = .結(jié)合以上信息,給出下列關(guān)于Fn的說法: ①F2= ;
②F24= ;
③F27= ;
④若n是一個整數(shù)的平方,則Fn=1.
其中正確的說法有 . (只填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:
(1)2n﹣(2﹣n)+(6n﹣2),其中n=﹣2;
(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a>b,則下列各式中正確的是(
A.a﹣ <b﹣
B.﹣4a>﹣4b
C.﹣2a+1<﹣2b+1
D.a2>b2

查看答案和解析>>

同步練習(xí)冊答案