【題目】在△ABC中,點(diǎn)A到直線BC的距離為d,AB>AC>d,以A為圓心,AC為半徑畫圓弧,圓弧交直線BC于點(diǎn)D,過點(diǎn)D作DE∥AC交直線AB于點(diǎn)E,若BC=4,DE=1,∠EDA=∠ACD,則AD=__________.
【答案】2或-2+2
【解析】
當(dāng)∠ACB為銳角時(shí),根據(jù)題意易證∠BDE=∠ADE=∠ADC=∠ACD=60°,則△ACD為等邊三角形,設(shè)AD=x,根據(jù)△BDE∽△BCA,列出關(guān)于x的方程,然后求解方程即可,同理求出當(dāng)∠ACB為鈍角時(shí),AD的長(zhǎng)即可.
解:如圖,當(dāng)∠C為銳角時(shí),
∵AD=AC,
∴∠ADC=∠ACD,
∵DE∥AC,
∴∠BDE=∠ACD,
已知∠EDA=∠ACD,
∴∠BDE=∠ADE=∠ADC=∠ACD=60°,
∴△ACD為等邊三角形,
∵DE∥AC,
∴△BDE∽△BCA,
設(shè)AD=AC=CD=x,
則,即,
解得x=2,
∴AD=2;
如圖,當(dāng)∠ACB為鈍角時(shí),
同理可得△ACD為等邊三角形,
∵DE∥AC,
∴△BCA∽△BDE,
設(shè)AD=AC=CD=x,
則,即,
解得x=﹣2+2,
∴AD=﹣2+2.
故答案為:2或-2+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).
(1)求出與之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數(shù)表達(dá)式;
(3)設(shè)這種蔬菜每千克收益為元,試問在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)將平行四邊形ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)B′處.AB′與CD交于點(diǎn)E.
(1)求證:△AED≌△CEB′;
(2)過點(diǎn)E作EF⊥AC交AB于點(diǎn)F,連接CF,判斷四邊形AECF的形狀并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(4,0),并且OA=OC=4OB,動(dòng)點(diǎn)P在過A,B,C三點(diǎn)的拋物線上.
(1)求拋物線的解析式;
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動(dòng)點(diǎn)P作PE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時(shí)每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價(jià)元之間符合一次函數(shù)關(guān)系,其圖象如圖所示.
求y與x的函數(shù)關(guān)系式;
物價(jià)部門規(guī)定:這種電子產(chǎn)品銷售單價(jià)不得超過每件80元,那么,當(dāng)銷售單價(jià)x定為每件多少元時(shí),廠家每月獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,2AB>BC,點(diǎn)E和點(diǎn)F為邊AD上兩點(diǎn),將矩形沿著BE和CF折疊,點(diǎn)A和點(diǎn)D恰好重合于矩形內(nèi)部的點(diǎn)G處,
(1)當(dāng)AB=BC時(shí),求∠GEF的度數(shù);
(2)若AB=,BC=2,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=6,AM,BN是⊙O的兩條切線,點(diǎn)D是AM上一點(diǎn),連接OD,作BE∥OD交⊙O于點(diǎn)E,連接DE并延長(zhǎng)交BN于點(diǎn).
(1)求證:DC是⊙O的切線;
(2)設(shè)AD=x,BC=y.求y與x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)
(3)若AD=1,連接AE并延長(zhǎng)交BC于F,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQ∥BD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣2x+4與x軸,y軸分別交于點(diǎn)C,A,點(diǎn)D為點(diǎn)B(﹣3,0)關(guān)于AC的對(duì)稱點(diǎn),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D.
(1)求證:四邊形ABCD為菱形;
(2)求反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點(diǎn)N,y軸正半軸上一點(diǎn)M,且四邊形ABMN是平行四邊形,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com