【題目】如圖,已知拋物線y軸相交于點(diǎn)A03),與x正半軸相交于點(diǎn)B,對(duì)稱軸是直線x=1

1)求此拋物線的解析式以及點(diǎn)B的坐標(biāo).

2)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)O出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿y軸正方向運(yùn)動(dòng),當(dāng)N點(diǎn)到達(dá)A點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).過動(dòng)點(diǎn)Mx軸的垂線交線段AB于點(diǎn)Q,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

①當(dāng)t為何值時(shí),四邊形OMPN為矩形.

②當(dāng)t0時(shí),BOQ能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

【答案】1,B點(diǎn)坐標(biāo)為(30);(2)①;②.

【解析】

1)由對(duì)稱軸公式可求得b,由A點(diǎn)坐標(biāo)可求得c,則可求得拋物線解析式;再令y=0可求得B點(diǎn)坐標(biāo);

2)①用t可表示出ONOM,則可表示出P點(diǎn)坐標(biāo),即可表示出PM的長(zhǎng),由矩形的性質(zhì)可得ON=PM,可得到關(guān)于t的方程,可求得t的值;②由題意可知OB=OA,故當(dāng)BOQ為等腰三角形時(shí),只能有OB=BQOQ=BQ,用t可表示出Q點(diǎn)的坐標(biāo),則可表示出OQBQ的長(zhǎng),分別得到關(guān)于t的方程,可求得t的值.

1)∵拋物線對(duì)稱軸是直線x=1,

∴﹣=1,解得b=2,

∵拋物線過A0,3),

c=3,

∴拋物線解析式為,令y=0可得,解得x=1x=3

B點(diǎn)坐標(biāo)為(3,0);

2)①由題意可知ON=3t,OM=2t,

P在拋物線上,

P2t),

∵四邊形OMPN為矩形,

ON=PM,

3t=,解得t=1t=(舍去),

∴當(dāng)t的值為1時(shí),四邊形OMPN為矩形;

②∵A0,3),B3,0),

OA=OB=3,且可求得直線AB解析式為y=x+3,

∴當(dāng)t0時(shí),OQ≠OB,

∴當(dāng)BOQ為等腰三角形時(shí),有OB=QBOQ=BQ兩種情況,由題意可知OM=2t

Q2t,﹣2t+3),

OQ=,BQ=|2t3|,又由題意可知0t1,當(dāng)OB=QB時(shí),則有|2t3|=3,解得t=(舍去)或t=;

當(dāng)OQ=BQ時(shí),則有=|2t3|,解得t=;

綜上可知當(dāng)t的值為時(shí),BOQ為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題)

如圖1,在中,,過點(diǎn)作直線平行于,點(diǎn)在直線上移動(dòng),角的一邊始終經(jīng)過點(diǎn),另一邊交于點(diǎn),研究的數(shù)量關(guān)系.

(探究發(fā)現(xiàn))

1)如圖2,某數(shù)學(xué)興趣小組運(yùn)用從特殊到一般的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點(diǎn)移動(dòng)到使點(diǎn)與點(diǎn)重合時(shí),通過推理就可以得到,請(qǐng)寫出證明過程;

(數(shù)學(xué)思考)

2)如圖3,若點(diǎn)上的任意一點(diǎn)(不含端點(diǎn)),受(1)的啟發(fā),這個(gè)小組過點(diǎn)于點(diǎn),就可以證明,請(qǐng)完成證明過程;

(拓展引申)

3)如圖4,在(1)的條件下,邊上任意一點(diǎn)(不含端點(diǎn)),是射線上一點(diǎn),且,連接交于點(diǎn),這個(gè)數(shù)學(xué)興趣小組經(jīng)過多次取點(diǎn)反復(fù)進(jìn)行實(shí)驗(yàn),發(fā)現(xiàn)點(diǎn)在某一位置時(shí)的值最大.若,請(qǐng)你直接寫出的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).

(1)求直線與雙曲線的解析式.

(2)點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的四個(gè)頂點(diǎn)都在雙曲線yk0)上,BC2AB,且矩形ABCD的面積是32,則k的值是(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+ca0)交x軸于點(diǎn)A2,0),B(﹣3,0),交y軸于點(diǎn)C,且經(jīng)過點(diǎn)d(﹣6,﹣6),連接ADBD

1)求該拋物線的函數(shù)關(guān)系式;

2)若點(diǎn)MX軸上方的拋物線上一點(diǎn),能否在點(diǎn)A左側(cè)的x軸上找到另一點(diǎn)N,使得△AMN與△ABD相似?若相似,請(qǐng)求出此時(shí)點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由;

3)若點(diǎn)P是直線AD上方的拋物線上一動(dòng)點(diǎn)(不與A,D重合),過點(diǎn)PPQy軸交直線AD于點(diǎn)Q,以PQ為直徑作E,則E在直線AD上所截得的線段長(zhǎng)度的最大值等于   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)OAB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交ACAB于點(diǎn)E,F

1)試判斷直線BCO的位置關(guān)系,并說明理由;

2)若BD2,BF2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018無錫市體育中考男生項(xiàng)目分為速度耐力類、力量類和靈巧類,每位考生只能在三類中各選一項(xiàng)進(jìn)行考試.其中速度耐力類項(xiàng)目有:50米跑、800米跑、50米游泳;力量類項(xiàng)目有:擲實(shí)心球、引體向上;靈巧類項(xiàng)目有:30秒鐘跳繩、立定跳遠(yuǎn)、俯臥撐、籃球運(yùn)球.男生小明“50米跑是強(qiáng)項(xiàng),他決定必選,其它項(xiàng)目在平時(shí)測(cè)試中成績(jī)完全相同,他決定隨機(jī)選擇.

(1)請(qǐng)用畫樹狀圖或列表的方法求小明50米跑、引體向上和立定跳遠(yuǎn)’”的概率;

(2)小明所選的項(xiàng)目中有立定跳遠(yuǎn)的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,是弦,點(diǎn)在圓外,,于點(diǎn),連接,,

1)求證:的切線;

2)求證:;

3)設(shè)的面積為的面積為,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿折線A﹣C﹣B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x(s),APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示.

(1)求a的值;

(2)求圖2中圖象C2段的函數(shù)表達(dá)式;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段BC上某一段時(shí)APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)APQ的面積,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案