【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設了A(體操)、B(乒乓球)、C(毽球)、D(跳繩)四項活動.為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖。

請根據(jù)統(tǒng)計圖回答下列問題:

(1)這次被調(diào)查的學生共有_____人;

(2)請將統(tǒng)計圖2補充完整;

(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是 _____度;

(4)已知該校共有學生1000人,根據(jù)調(diào)查結(jié)果估計該校喜歡體操的學生有_____人.

【答案】 400 108 100

【解析】分析:1)根據(jù)C類的人數(shù)除以C類人數(shù)所占的百分比,即可求出總?cè)藬?shù);(2)分別求得A類的人數(shù)和D類的人數(shù),從而補全條形統(tǒng)計圖即可;(2)利用喜歡B類項目的學生所占的百分比乘以360°即可得B項目對應的扇形的圓心角的度數(shù);(4)用總?cè)藬?shù)乘以喜歡體操的學生所占的百分比即可得答案

詳解:

(1)這次被調(diào)查的學生共有160÷40%=400(人),
故答案為:400;
(2)D項目的人數(shù)為400×20%=80(人),
則A項目的人數(shù)為400-(120+160+80)=40(人),
補全圖形如下:

(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是×360°=108°
故答案為:108;
(4)根據(jù)調(diào)查結(jié)果估計該校喜歡體操的學生有1000×=100(人),
故答案為:100.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)計算: 9 + ( π 2010 ) 0 2 cos 45 ° .
(2)先化簡,再求值: ,其中a=1﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,

(1)寫出數(shù)軸上點B表示的數(shù)   ;

(2)|5﹣3|表示53之差的絕對值,實際上也可理解為53兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動點PO點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設運動時間為t(t>0)秒.求當t為多少秒時?A,P兩點之間的距離為2;

(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設運動時間為t(t>0)秒.問當t為多少秒時?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,E是CD的中點,連接AE并延長交BC的延長線于點F,且AB⊥AE.若AB=5,AE=6,則梯形上下底之和為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動.在一個不透明的箱子里放有4個完全相同的小球,球上分別標有“0元”、“10元”、“30元”和“50元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),消費每滿300元,就可以從箱子里先后摸出兩個球(每次只摸出一個球,第一次摸出后不放回).商場根據(jù)兩個小球所標金額之和返還相應價格的購物券,可以重新在本商場消費.某顧客消費剛好滿300元,則在本次消費中:
(1)該顧客至少可得元購物券,至多可得元購物券;
(2)請用畫樹狀圖或列表法,求出該顧客所獲購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:

1)以A點為旋轉(zhuǎn)中心,將△ABC繞點A順時針旋轉(zhuǎn)90°△AB1C1,畫出△AB1C1

2)作出△ABC關(guān)于坐標原點O成中心對稱的△A2B2C2

3)作出點C關(guān)于x軸的對稱點P.若點P向右平移xx取整數(shù))個單位長度后落在△A2B2C2的內(nèi)部,請直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點C、A、D在同一條直線上,∠ABC=∠ADE=α,線段BD、CE交于點M.

(1)如圖1,若AB=AC,AD=AE
①問線段BD與CE有怎樣的數(shù)量關(guān)系?并說明理由;
②求∠BMC的大小(用α表示);
(2)如圖2,若AB=BC=kAC,AD=ED=kAE,則線段BD與CE的數(shù)量關(guān)系為 , ∠BMC=(用α表示);
(3)在(2)的條件下,把△ABC繞點A逆時針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接EC并延長交BD于點M.則∠BMC=(用α表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象都經(jīng)過點A(﹣2,6)和點(4,n).

(1)求這兩個函數(shù)的解析式;
(2)直接寫出不等式kx+b≤ 的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:有理數(shù)xA用數(shù)軸上點A表示,xA叫做點A在數(shù)軸上的坐標;有理數(shù)xB用數(shù)軸上點B表示,xB叫做點B在數(shù)軸上的坐標.|AB|表示數(shù)軸上的兩點A,B之間的距離.

(1)借助數(shù)軸,完成下表:

xA

xB

xA﹣xB

|AB|

3

2

1

1

1

5

   

   

2

﹣3

   

   

﹣4

1

   

   

﹣5

﹣2

   

   

﹣3

﹣6

   

   

(2)觀察(1)中的表格內(nèi)容,猜想|AB|=   ;(用含xA,xB的式子表示,不用說理)

(3)已知點A在數(shù)軸上的坐標是﹣2,且|AB|=8,利用(2)中的結(jié)論求點B在數(shù)軸上的坐標.

查看答案和解析>>

同步練習冊答案