精英家教網 > 初中數學 > 題目詳情

【題目】已知:三角形ABC,A=90AB=ACDBC的中點,如圖,EF分別是ABAC上的點,且BE=AF,求證:DEF為等腰直角三角形.

【答案】證明見解析.

【解析】試題分析連接AD,先利用SAS證明△BDE≌△ADF,從而得DE=DF,然后再證明∠EDF=90°即可.

試題解析:連接AD,

∵AB=AC,∠A=90°,DBC中點,

AD=BC=BD=CD

AD平分∠BAC,

∴∠BAD=∠CAD=45°,

△BDE△ADF中:BD=AD ,∠B=∠DAF=45°,BE=AF,

∴△BDE≌△ADF,

∴DE=DF,∠BDE=∠ADF,

∵∠BDE+∠ADE=90°,

∴∠ADF+∠ADE=90°,

即:∠EDF=90°,

∴△EDF為等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下列命題中:①等腰三角形底邊的中點到兩腰的距離相等;②等腰三角形的高、中線、角平分線互相重合;③若成軸對稱,則一定與全等;④有一個角是60度的三角形是等邊三角形;⑤等腰三角形的對稱軸是頂角的平分線.正確命題的個數是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,小明和小龍做轉陀螺游戲,他們同時分別轉動一個陀螺,當兩個陀螺都停下來時,與桌面相接觸的邊上的數字都是奇數的概率是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC AB=AC,D、E 兩點分別在 ACBC 上,BD 是∠ABC 的平分線,DEAB,若 BE=5cm,CE=3cm,則CDE 的周長是(

A. 13cmB. 11cmC. 9cmD. 8cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC 為等邊三角形,點 D、E 分別在邊 BC、AC 上,且 AE=CD,AD BE相交于點 F.則∠DFE 的度數為_____°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數字,分別是1,4,7,8.現規(guī)定從袋中任取一個小球,對應的數字作為一個兩位數的個位數;然后將小球放回袋中并攪拌均勻,再任取一個小球,對應的數字作為這個兩位數的十位數.

(1)寫出按上述規(guī)定得到所有可能的兩位數;

(2)從這些兩位數中任取一個,求其算術平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,錨標浮筒是打撈作業(yè)中用來標記錨或沉船位置的,它的上下兩部分是圓柱,中間是一個圓柱(如圖,單位:mm).電鍍時,如果每平方米用鋅0.11kg,要電鍍1000個這樣的錨標浮筒需要用多少鋅?(精確到1kg)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2-2ax+b經過點C(0,-),且與x軸交于點A、點B,若tanACO=

(1)求此拋物線的解析式;

(2)若拋物線的頂點為M,點P是線段OB上一動點(不與點B重合),MPQ=45,射線PQ與線段BM交于點Q,當△MPQ為等腰三角形時,求點P的坐標.

查看答案和解析>>

同步練習冊答案