【題目】如圖,已知△ABC的面積為24,點D在線段AC上,點F在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( )
A.3 B.4 C.6 D.8
【答案】D
【解析】
試題分析:連接EC,過A作AM∥BC交FE的延長線于M,求出平行四邊形ACFM,根據(jù)等底等高的三角形面積相等得出△BDE的面積和△CDE的面積相等,△ADE的面積和△AME的面積相等,推出陰影部分的面積等于平行四邊形ACFM的面積的一半,求出CF×hCF的值即可.
解:連接EC,過A作AM∥BC交FE的延長線于M,
∵四邊形CDEF是平行四邊形,
∴DE∥CF,EF∥CD,
∴AM∥DE∥CF,AC∥FM,
∴四邊形ACFM是平行四邊形,
∵△BDE邊DE上的高和△CDE的邊DE上的高相同,
∴△BDE的面積和△CDE的面積相等,
同理△ADE的面積和△AME的面積相等,
即陰影部分的面積等于平行四邊形ACFM的面積的一半,是×CF×hCF,
∵△ABC的面積是24,BC=3CF
∴BC×hBC=×3CF×hCF=24,
∴CF×hCF=16,
∴陰影部分的面積是×16=8,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個圖形成軸對稱那么這兩個圖形一定是全等圖形而兩個全等圖形_______成軸對稱(填“一定”“一定不”或“不一定”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2010年3月份,某市市區(qū)一周空氣質(zhì)量報告中某項污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是( 。
A. 32,31 B. 31,32 C. 31,31 D. 32,35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為a的等邊△ACB中,E是對稱軸AD上一個動點,連EC,將線段EC繞點C逆時針旋轉(zhuǎn)60°得到MC,連DM,則在點E運(yùn)動過程中,DM的最小值是_____。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年長江中下游地區(qū)發(fā)生了特大旱情.為抗旱保豐收,某地政府制定了農(nóng)戶投資購買抗旱設(shè)備的補(bǔ)貼辦法,其中購買Ⅰ型、Ⅱ型抗旱設(shè)備投資的金額與政府補(bǔ)的額度存在下表所示的函數(shù)對應(yīng)關(guān)系.
(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶同時對Ⅰ型、Ⅱ型兩種設(shè)備共投資10萬元購買,請你設(shè)計一個能獲得最大補(bǔ)貼金額的方案,并求出按此方案能獲得的最大補(bǔ)貼金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲布袋中有三個紅球,分別標(biāo)有數(shù)字1,2,3;乙布袋中有三個白球,分別標(biāo)有數(shù)字2,3,4.這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機(jī)摸出一個紅球,小剛從乙袋中隨機(jī)摸出一個白球.
(1)用畫樹狀圖(樹形圖)或列表的方法,求摸出的兩個球上的數(shù)字之和為6的概率;
(2)小亮和小剛做游戲,規(guī)則是:若摸出的兩個球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認(rèn)為這個游戲公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分.已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).有下列結(jié)論:
①abc>0;
②4a﹣2b+c<0;
③4a+b=0;
④拋物線與x軸的另一個交點是(5,0);
⑤點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2.
其中正確的是( )
A.①②③ B.②④⑤ C.①③④ D.③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車輛,限速40千米/時,已知交警測速點M到該公路A點的距離為10米,∠MAB=45°,∠MBA=30°(如圖所示),現(xiàn)有一輛汽車由A往B方向勻速行駛,測得此車從A點行駛到B點所用的時間為3秒.
(1)求測速點M到該公路的距離;
(2)通過計算判斷此車是否超速.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com