【題目】如圖,APB=30°,圓心在PB上的O的半徑為1cm,OP=3cm,若O沿BP方向平移,當O與PA相切時,圓心O平移的距離為_____cm.

【答案】1或5

【解析】試題分析:首先根據(jù)題意畫出圖形,然后由切線的性質,可得∠O′CP=90°,又由∠APB=30°,O′C=1cm,即可求得O′P的長,繼而求得答案.

解:有兩種情況:

(1)如圖1,O平移到O位置時,OPA相切時,且切點為C

連接OC,OCPA,即∠OCP=90°

∵∠APB=30°,OC=1cm,

OP=2OC=2cm,

OP=3cm,

OO′=OPOP=1(cm).

(2)如圖2,同理可得:OP=2cm,

OO=5cm.

故答案為:15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E、F、H分別是AB、BC、CD的中點,CE、DF交于G,連接AG、HG.下列結論:①CEDF;AG=AD;③∠CHG=DAG;HG=AD.其中正確的有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)-23-(-58)+(-5)

(2)3×(2)+38;

(3) (+--24

(4)0.5+(15)(17)|12|

(5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分8分)

為了加強學生課外閱讀,開闊視野,某校開展了書香校園,從我做起的主題活動.學校隨機抽取了部分學生,對他們一周的課外閱讀時間進行調查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:

請根據(jù)圖表信息回答下列問題:

(1)頻數(shù)分布表中的 , ;

(2)將頻數(shù)分布直方圖補充完整;

(3)學校將每周課外閱讀時間在小時以上的學生評為閱讀之星,請你估計該校名學生中評為閱讀之星的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小東設計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程

已知:直線l及直線l外一點P

求作:直線PQ,使得PQl

作法:如圖,

在直線l上取一點A,作射線AP,以點P為圓心,PA長為半徑畫弧,交AP

延長線于點B;

以點B為圓心,BA長為半徑畫弧,交l于點C(不與點A重合),連接BC;

以點B為圓心,BP長為半徑畫孤,交BC于點Q;

作直線PQ

所以直線PQ就是所求作的直線.

根據(jù)小東設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明

證明:∵PBPA,BC   BQPB,

PBPABQ   

PQl   )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B在數(shù)軸上分別表示有理數(shù)a、b,AB兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB|ab|

利用數(shù)形結合思想回答下列問題:

(1)數(shù)軸上表示13兩點之間的距離   

(2)數(shù)軸上表示﹣12和﹣6的兩點之間的距離是   

(3)數(shù)軸上表示x1的兩點之間的距離表示為   

(4)x表示一個有理數(shù),且﹣4x2,則|x2|+|x+4|   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABCD,ADBC,BEDF,則圖中全等三角形共有( )對.

A. 2B. 3C. 4D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,現(xiàn)計劃在空地上種植草皮,經測量∠A=90°,AB=3m,BC=12mCD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有3600名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

1)參與本次問卷調查的學生共有    人,其中選擇D類的人數(shù)有    人;

2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角的度數(shù),并補全C對應的條形統(tǒng)計圖;

3)若將A、BCDE這四類上學方式視為綠色出行,請估計該校選擇綠色出行的學生人數(shù).

查看答案和解析>>

同步練習冊答案