【題目】如圖所示,在矩形OABC中,OA=5AB=4,點(diǎn)D為邊AB上一點(diǎn),將△BCD沿直線CD折疊,使點(diǎn)B恰好落在OA邊上的點(diǎn)E處,分別以OCOA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.

1)求OE的長.

2)求經(jīng)過O,D,C三點(diǎn)的拋物線的解析式.

3)一動點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個(gè)單位長的速度向點(diǎn)B運(yùn)動,同時(shí)動點(diǎn)QE點(diǎn)出發(fā),沿EC以每秒1個(gè)單位長的速度向點(diǎn)C運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,當(dāng)t為何值時(shí),DP=DQ

4)若點(diǎn)N在(2)中的拋物線的對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使得以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出M點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】13;(2;(3t=;(4)存在,M點(diǎn)的坐標(biāo)為(2,16)或(-6,16)或

【解析】

1)由矩形的性質(zhì)以及折疊的性質(zhì)可求得CECO的長,在RtCOE中,由勾股定理可求得OE的長;
2)設(shè)AD=m,在RtADE中,由勾股定理列方程可求得m的值,從而得出D點(diǎn)坐標(biāo),結(jié)合C、O兩點(diǎn),利用待定系數(shù)法可求得拋物線解析式;
3)用含t的式子表示出BP、EQ的長,可證明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;

4)由(2)可知C-4,0),E0-3),設(shè)N-2,n),Mm,y),分以下三種情況:①以EN為對角線,根據(jù)對角線互相平分,可得CM的中點(diǎn)與EN的中點(diǎn)重合,根據(jù)中點(diǎn)坐標(biāo)公式,可得m的值,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;②當(dāng)EM為對角線,根據(jù)對角線互相平分,可得CN的中點(diǎn)與EM的中點(diǎn)重合,根據(jù)中點(diǎn)坐標(biāo)公式,可得m的值,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;③當(dāng)CE為對角線,根據(jù)對角線互相平分,可得CE的中點(diǎn)與MN的中點(diǎn)重合,根據(jù)中點(diǎn)坐標(biāo)公式,可得m的值,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.

解:(1)∵OABC為矩形,∴BC=AO=5,CO=AB=4

又由折疊可知,

2)設(shè)AD=m,則DE=BD=4-m
OE=3,∴AE=5-3=2

RtADE中,AD2+AE2=DE2

m2+22=(4-m)2,∴m=,∴D,

∵該拋物線經(jīng)過C(-4,0)、O00),

∴設(shè)該拋物線解析式為

把點(diǎn)D代入上式得,

a=,

3)如圖所示,連接DP、DQ.由題意可得,CP=2t,EQ=t,則BP=5-2t

當(dāng)DP=DQ時(shí),在RtDBPRtDEQ中,

RtDBPRtDEQHL),∴BP=EQ,

5-2t=t,∴t=

故當(dāng)t=時(shí),DP=DQ;

4)∵拋物線的對稱軸為直線x==-2,
∴設(shè)N-2,n),
又由(2)可知C-4,0),E0,-3),設(shè)Mm,y),
①當(dāng)EN為對角線,即四邊形ECNM是平行四邊形時(shí),如圖1,

則線段EN的中點(diǎn)橫坐標(biāo)為=-1,線段CM的中點(diǎn)橫坐標(biāo)為
EN,CM互相平分,
=-1,解得m=2,
M點(diǎn)在拋物線上,
y=×22+×2=16,
M2,16);
②當(dāng)EM為對角線,即四邊形ECMN是平行四邊形時(shí),如圖2,

則線段EM的中點(diǎn)橫坐標(biāo)為,線段CN中點(diǎn)橫坐標(biāo)為

EM,CN互相平分,
m=-3,解得m=-6,
又∵M點(diǎn)在拋物線上,

,

M-6,16);
③當(dāng)CE為對角線,即四邊形EMCN是平行四邊形時(shí),如圖3

線段CE的中點(diǎn)的橫坐標(biāo)為=-2,線段MN的中點(diǎn)的橫坐標(biāo)為,

CEMN互相平分,∴,

解得m=-2,
當(dāng)m=-2時(shí),y=

M

綜上可知,存在滿足條件的點(diǎn)M,其坐標(biāo)為(2,16)或(-6,16)或

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點(diǎn)C,直線ly4分別交兩函數(shù)圖象于點(diǎn)A1,4)和點(diǎn)B,過點(diǎn)BBDl交反比例函數(shù)圖象于點(diǎn) D

1)求反比例函數(shù)的解析式;

2)當(dāng)BD2AB時(shí),求點(diǎn)B的坐標(biāo);

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,在中,、分別是的角平分線,交、于點(diǎn),連接

1)求證:、互相平分;

2)若,,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)晾衣架的實(shí)物圖,支架的基本圖形是菱形,MN是晾衣架的一個(gè)滑槽,點(diǎn)P在滑槽MN上、下移動時(shí),晾衣架可以伸縮,其示意圖如圖所示,已知每個(gè)菱形的邊長均為20cm,且

當(dāng)點(diǎn)P向下滑至點(diǎn)N處時(shí),測得時(shí)

求滑槽MN的長度;

此時(shí)點(diǎn)A到直線DP的距離是多少?

當(dāng)點(diǎn)P向上滑至點(diǎn)M處時(shí),點(diǎn)A在相對于的情況下向左移動的距離是多少?

結(jié)果精確到,參考數(shù)據(jù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-2x+m=0,有兩個(gè)不相等的實(shí)數(shù)根.

⑴求實(shí)數(shù)m的最大整數(shù)值;

⑵在⑴的條下,方程的實(shí)數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)E、F分別在邊CD、AB上,且滿足CEAF

1)求證:△ADE≌△CBF

2)連接AC,若AC恰好平分∠EAF,試判斷四邊形AECF為何種特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作體驗(yàn))

如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點(diǎn)P,使得∠APB=30°,如圖②,小明的作圖方法如下:

第一步:分別以點(diǎn)A,B為圓心,AB長為半徑作弧,兩弧在AB上方交于點(diǎn)O;

第二步:連接OA,OB;

第三步:以O為圓心,OA長為半徑作⊙O,交l;

所以圖中即為所求的點(diǎn).(1)在圖②中,連接,說明∠=30°

(方法遷移)

2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點(diǎn)P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).

(深入探究)

3)已知矩形ABCD,BC=2AB=mPAD邊上的點(diǎn),若滿足∠BPC=45°的點(diǎn)P恰有兩個(gè),則m的取值范圍為________

4)已知矩形ABCD,AB=3,BC=2P為矩形ABCD內(nèi)一點(diǎn),且∠BPC=135°,若點(diǎn)P繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°到點(diǎn)Q,則PQ的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】受新冠疫情影響,31日起,君樂買菜網(wǎng)絡(luò)公司某種蔬菜的銷售價(jià)格開始上漲.如圖1,前四周該蔬菜每周的平均銷售價(jià)格y(元/kg)與周次xx是正整數(shù),1≤x5)的關(guān)系可近似用函數(shù)刻畫;進(jìn)入第5周后,由于外地蔬菜的上市,該蔬菜每周的平均銷售價(jià)格y(元/kg)從第5周的6/kg下降至第6周的5.6/kgy與周次x5≤x≤7)的關(guān)系可近似用函數(shù)刻畫.

1)求a,b的值.

2)若前五周該蔬菜的銷售量mkg)與每周的平均銷售價(jià)格y(元/kg)之間的關(guān)系可近似地用如圖2所示的函數(shù)圖象刻畫,第6周的銷售量與第5周相同:

①求my的函數(shù)表達(dá)式;

②在前六周中,哪一周的銷售額w(元)最大?最大銷售額是多少?

3)若該蔬菜第7周的銷售量是100kg,由于受降雨的影響,此種蔬菜第8周的可銷售量將比第7周減少a%a0).為此,公司又緊急從外地調(diào)運(yùn)了5噸此種蔬菜,剛好滿足本地市民的需要,且使此種蔬菜第8周的銷售價(jià)格比第7周僅上漲0.8a%.若在這一舉措下,此種蔬菜在第8周的總銷售額與第7周剛好持平,請通過計(jì)算估算出a的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級學(xué)生每天參加體育鍛煉額時(shí)間,從該校九年級學(xué)生中隨機(jī)抽取20名學(xué)生進(jìn)行調(diào)查,得到如下數(shù)據(jù)(單位:分鐘):

30 60 70 10 30 115 70 60 75 90 15 70 40 75 105 80 60 30 70 45

對以上數(shù)據(jù)進(jìn)行整理分析,得到下列表一和表二:

表一

時(shí)間t(單位:分鐘)

人數(shù)

2

a

10

b

表二

平均數(shù)

中位數(shù)

眾數(shù)

60

c

d

根據(jù)以上提供信息,解答下列問題:

1)填空

a= b=

c= d=

2)如果該,F(xiàn)有九年級學(xué)生200名,請估計(jì)該校九年級學(xué)生每天參加體育鍛煉的時(shí)間達(dá)到平均水平及以上的學(xué)生人數(shù)。

查看答案和解析>>

同步練習(xí)冊答案