【題目】某品牌的面粉袋上標(biāo)有質(zhì)量為(25±0.25)kg的字樣,下列4袋面粉中質(zhì)量合格的是(
A.24.70kg
B.24.80kg
C.25.30kg
D.25.51kg

【答案】B
【解析】解:在24.75~25.25這個(gè)區(qū)間內(nèi)的只有24.80.
故選B.
正確理解(25±0.25)的含義,25+0.25=25.25,25﹣0.25=24.75,說明面粉在此區(qū)間內(nèi)合格.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,中學(xué)生的身體素質(zhì)普遍下降,某校為了提高本校學(xué)生的身體素質(zhì),落實(shí)教育部門“在校學(xué)生每天體育鍛煉時(shí)間不少于1小時(shí)”的文件精神,對(duì)部分學(xué)生的每天體育鍛煉時(shí)間進(jìn)行了調(diào)查統(tǒng)計(jì).以下是本次調(diào)查結(jié)果的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.

組別

A

B

C

D

E

時(shí)間t(分鐘)

t<40 

40≤t<60 

60≤t<80 

80≤t<100 

t≥100 

人數(shù)

12

30

a

24

12

(1)求出本次被調(diào)查的學(xué)生數(shù);
(2)請(qǐng)求出統(tǒng)計(jì)表中a的值;
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2400名學(xué)生中每天體育鍛煉時(shí)間不少于1小時(shí)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014年全國兩會(huì)民生活題再次成為社會(huì)焦點(diǎn),央視記者為了了解百姓“兩會(huì)民生話題”的聚焦點(diǎn),隨機(jī)調(diào)查了部分北京市民,并對(duì)結(jié)果進(jìn)行整理.繪制了如下不完整的統(tǒng)計(jì)圖表.

組別

焦點(diǎn)話題

人數(shù)

A

食品安全

80

B

教育醫(yī)療

M

C

就業(yè)養(yǎng)老

100

D

生態(tài)環(huán)保

120

E

其它

60

請(qǐng)根據(jù)圖表中提供的信息解答下列問題:
(1)填空:這次調(diào)查的樣本容量是 ,m= ;扇形統(tǒng)計(jì)圖中,E組所對(duì)圓心角的度數(shù)為
(2)北京市現(xiàn)常駐人口數(shù)達(dá)2000萬,請(qǐng)估計(jì)關(guān)注D組話題的市民人數(shù)
(3)若在這次接受調(diào)查的市民中,隨機(jī)抽查一人,則此人關(guān)注C組話題的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某漁場計(jì)劃購買甲、乙兩種魚苗共6000尾,甲種魚苗每尾0.5元,乙種魚苗每尾0.8元.相關(guān)資料表明:甲、乙兩種魚苗的成活率分別為90%和95%.
(1)若購買這批魚苗共用了3600元,求甲、乙兩種魚苗各購買了多少尾?
(2)若要使這批魚苗的成活率不低于93%,且購買魚苗的總費(fèi)用最低,應(yīng)如何選購魚苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x2﹣9x+18=0的兩個(gè)根是等腰三角形的底和腰,則這個(gè)三角形的周長為(
A.12
B.15
C.12或15
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x(x﹣2)+3(x﹣2)=0的解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)C是∠AOB平分線上一點(diǎn),點(diǎn)E,F(xiàn)分別在邊OA,OB上,如果要得到OE=OF,需要添加以下條件中的某一個(gè)即可,請(qǐng)你寫出所有可能結(jié)果的序號(hào)為①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.

(1)求證:BC=CD;

(2)分別延長AB,DC交于點(diǎn)P,若PB=OB,CD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線OA:y= x與直線AB:y=kx+b相交于點(diǎn)A(9,3),點(diǎn)B坐標(biāo)為(0,12).

(1)求直線AB的表達(dá)式;
(2)點(diǎn)P是線段OA上任意一點(diǎn)(不與點(diǎn)O,A重合),過點(diǎn)P作PQ∥y軸,交線段AB于點(diǎn)Q,分別過P,Q作y軸的直線,垂足分別為M,H,得矩形PQHM.如果矩形PQHM的周長為20,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案